找到 3 条结果 · Applied Energy
基于模型-数据融合方法的锂离子电池储能系统惯性支撑持续功率边界在线估计
Online estimation of inertia-supporting sustaining power boundary of lithium-ion battery energy storage systems based on model-data fusion method
Shaoxin Shi · Qiao Peng · Tianqi Liu · Yunteng Dai 等5人 · Applied Energy · 2025年1月 · Vol.393
摘要 锂离子电池储能系统(BESS)在为电力系统提供惯性支撑方面展现出巨大潜力。然而,如何在实现高效惯性支撑的同时保障电池的安全运行仍面临挑战,这要求对电池的输出边界进行准确估计,尤其是在在线运行条件下。然而,现有的电池输出功率边界评估方法通常忽略了惯性支撑特有的输出特性以及在线应用的需求,从而限制了其准确性与效率。本文提出了一种基于模型-数据融合方法(MDFM)的BESS惯性支撑持续功率边界(SPB)在线估计新方法。首先,开展一系列实验以研究电池在惯性支撑工况下的阻抗特性,并据此构建一种基于负...
解读: 该储能惯量支撑功率边界在线估算技术对阳光电源ST系列PCS及PowerTitan储能系统具有重要应用价值。通过模型-数据融合方法实现锂电池输出边界的实时精准评估,可直接集成至VSG虚拟同步机控制策略中,优化惯量响应过程中的功率调度。负阻抗等效电路模型结合SVM机器学习算法,能有效提升iSolarCl...
基于图特征与深度学习的锂离子电池退化轨迹早期感知
Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning
Haichuan Zhao · Jinhao Meng · Qiao Peng · Applied Energy · 2025年1月 · Vol.381
摘要 在电池储能系统(BESS)的全生命周期管理中,早期捕捉锂离子电池(LIB)的退化路径至关重要,然而现有研究主要集中在短期电池健康状态(如健康状态,SOH)诊断。本研究提出一种创新性概念,旨在仅利用少量初始循环数据即可感知锂离子电池的退化轨迹,从而为BESS复杂化的运行与维护策略预留充足的调整空间。本文提出一种新颖的深度学习框架,通过构建基于电池早期使用数据的图特征来获取容量退化轨迹。为了捕获更丰富的容量衰减特征,该框架通过生成增量容量(IC)曲线和容量差分曲线对电压-容量数据进行增强,并将...
解读: 该早期电池退化轨迹预测技术对阳光电源ST系列储能系统及PowerTitan产品具有重要价值。通过少量初始循环数据的图形化特征和深度学习,可在电池全生命周期早期预判容量衰减路径,为储能系统预测性维护提供60个循环内的精准预警。该技术可集成至iSolarCloud平台,结合增量容量曲线分析,优化BMS健...
一种用于锂离子电池退化轨迹预测的合成数据生成方法及进化型Transformer模型
A synthetic data generation method and evolutionary transformer model for degradation trajectory prediction in lithium-ion batteries
Haiyan Jin · Rui Ru · Lei Cai · Jinhao Meng 等7人 · Applied Energy · 2025年1月 · Vol.377
摘要 在锂离子电池使用的早期阶段识别其长期退化行为,对于电池管理系统(BMS)在实际应用中有效维护电池至关重要。然而,由于电池在生产和运行条件方面存在差异,该过程面临较大挑战。近年来,已有研究经验证明,数据驱动方法在处理退化预测问题上具有良好的应用前景。然而,合适数据的缺乏仍是影响预测最终性能的主要障碍。此外,预测结果还受到预测器设置的影响,包括神经网络结构及其超参数的设定。实现该过程自动化的挑战至今仍未得到解决。在本研究中,我们提出了一种新颖的退化轨迹预测框架。首先,通过条件生成对抗网络(CG...
解读: 该锂电池退化预测技术对阳光电源储能系统具有重要价值。通过CGAN合成数据和Transformer模型可显著提升ST系列PCS及PowerTitan储能系统中BMS的预测精度,解决早期退化识别难题。自动化超参数优化框架可集成至iSolarCloud平台,实现储能电站电池全生命周期健康管理和预测性维护,...