找到 8 条结果 · 光伏发电技术
基于领域对抗时序网络的跨区域分布式光伏系统功率预测可迁移框架
A Transferable Framework of PV Power Forecasting for Cross-Regional Distributed PV Systems Using Domain Adversarial Temporal Network
Jiaqi Qu · Qiang Sun · Zheng Qian · Hamidreza Zareipour 等5人 · IEEE Transactions on Industrial Informatics · 2025年7月
气象预报数据的缺失增加了分布式光伏系统输出功率预测的不准确性。特别是对于跨地区新建的分布式站点而言,基于数据驱动方法的建模受到历史数据不足的限制。因此,本文提出了一种基于迁移学习(TL)的领域对抗性时间网络(DATN)框架,该框架包含两个主要模块,即功率时间预测器和领域分类器。其中,考虑长短期记忆网络隐藏层权重的领域分类器旨在减少源领域和目标领域之间的分布差异。DATN采用了跨领域对抗性预训练与特定目标预测调整的迁移学习策略。在四项跨区域迁移实验中,对领域自适应方法和迁移策略的效果进行了比较。本...
解读: 从阳光电源的业务视角来看,这项基于域对抗时序网络的跨区域光伏功率预测技术具有显著的战略价值。该技术通过迁移学习框架解决了分布式光伏系统中气象数据缺失和新建站点历史数据不足的核心痛点,这与我司在全球范围内快速部署分布式光伏解决方案的业务需求高度契合。 对于我司的智能光伏逆变器和iSolarCloud...
一种用于双三电平VSI供电开绕组感应电机的多目标PWM策略,实现独立零序电流抑制、共模电压变化消除和中点电压平衡
Multi-Objective PWM Strategy with Independent ZSC Suppression, CMV Variation Elimination, and NPV Balance for OEWIM Fed by Dual Three-Level VSI
Jinggang Zheng · Shuying Yang · Zhen Xie · Xing Zhang 等5人 · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2025年5月
在共用直流母线的双三电平电压源逆变器供电开绕组驱动系统中,零序电流、共模电压和中点电压需同时抑制。本文提出一种多目标脉宽调制策略,首先选取零共模电压幅值矢量以消除共模电压波动;进而构建具有特定空间位置及对零序电流和中点电压影响互补的冗余矢量对,实现二者独立调控,有效解决多目标间的冲突。此外,提出死区补偿方案以抑制其对共模电压的影响。实验验证了该策略的有效性与可行性。
解读: 该多目标PWM策略对阳光电源ST系列储能变流器和SG系列光伏逆变器的三电平拓扑优化具有重要价值。其零序电流抑制技术可直接应用于PowerTitan储能系统的并联运行场景,降低环流损耗;共模电压变化消除方案能有效减少EMI滤波器体积,提升系统功率密度;中点电压平衡算法可延长直流侧电容寿命,增强1500...
一种具有光热、储热和电化学性能的新型集成碳化木电极用于太阳能驱动的热化学电池
A novel integrated carbon-wood electrode with photothermal, heat storage, and electrochemical properties for solar-driven thermochemical cells
Jun Zhang · Xiaotian Li · Jili Zheng · Yanan Zou 等8人 · Energy Conversion and Management · 2025年1月 · Vol.326
摘要 热化学电池为太阳能利用提供了一种可持续且环保的解决方案,但其性能常受到太阳辐射波动的限制。传统方法是将储热系统整合到热化学电池中,然而这些方法受限于较低的传热速率以及传统电极较小的电化学活性表面积。本研究创新性地提出一种碳化木电极设计,集成了增强的光热转换、储热和电化学性能,可实现太阳能驱动热化学电池中的连续发电。与传统的石墨电极相比,碳化木结构使光热转换效率提高了67%,电化学活性表面积增加了28%,单位体积(每立方厘米)的放热时间延长至16.67分钟。采用此类电极的热化学电池在太阳辐射...
解读: 该碳木一体化电极的光热-储热-电化学集成技术为阳光电源储能系统提供创新思路。其光热转换效率提升67%、电化学活性面积增加28%的设计理念,可应用于ST系列PCS的热管理优化和PowerTitan储能系统的温控策略改进。特别是其应对间歇性光照的稳定输出能力,与SG系列光伏逆变器的MPPT优化技术形成协...
基于预测的风-光互补电解制氢系统的设计与优化调度
Design and optimal scheduling of a forecasting-based wind-and-photovoltaic complementary electrolytic hydrogen production system
Weichao Dong · Hexu Sun · Zheng Li · Huifang Yang · Applied Energy · 2025年1月 · Vol.392
摘要 氢能可有效缓解能源短缺并减少环境污染。本文首次设计了一个完整的风能与光伏(PV)互补制氢系统,包括高效的发电系统模型、精确的预测模型、优良的优化调度策略以及高效的催化剂。该离网型互补发电系统在直流母线上实现。提出了一种混合预测模型,结合长短期记忆网络(LSTM)、分位数回归(QR)和正则藤copula方法。LSTM与QR相结合可获得边缘概率密度函数(PDF)。利用正则藤copula建立风能与光伏能源之间的相关性,并将边缘PDF与其相关性结构结合,实现对风能和光伏出力的联合预测。提出一种基于...
解读: 该风光制氢系统对阳光电源ST系列储能变流器和SG光伏逆变器具有重要应用价值。文中直流母线离网架构可结合我司1500V系统和三电平拓扑技术,提升功率转换效率。LSTM-DRL多目标优化调度策略可集成至iSolarCloud平台,实现风光出力预测与氢储能协同控制。研究的3.1美元/kg制氢成本为Powe...
基于卫星图像纹理特征与迁移学习的区域光伏功率预测优化高效方法
An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning
Yang Xi · Jianyong Zheng · Fei Mei · Gareth Taylor 等5人 · Applied Energy · 2025年1月 · Vol.385
准确高效的区域光伏发电功率预测对于提升光伏电力供应的稳定性并扩大其市场份额至关重要。近年来的研究进展已将卫星与地面观测数据的特征相结合,基于混合神经网络的模型展现出优异的预测性能。然而,仍存在若干挑战:直接从卫星图像中提取的空间特征往往缺乏细节,且大多数现有预测方法需要大量电力数据样本。因此,在云量变化速率较高的情况下,预测精度易受相位滞后的影响,同时由于区域光伏装置数量庞大且分布分散,计算负担也显著增加。为解决上述问题,本研究提出一种创新的时空特征,该特征将从卫星图像重构的纹理特征(TFs)与...
解读: 该区域光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过卫星图像纹理特征与迁移学习结合,可显著提升SG系列逆变器集群的功率预测精度(RMSE提升72%)并降低相位滞后,特别适用于分布式光伏电站管理。该算法计算效率提升10倍,可与ST储能系统协同优化充放电策略,减少云层...
水风光混合系统中现有水电站扩容优化的解析方法:以雅砻江流域为例
Analytical method for optimizing capacity expansion of existing hydropower plants in hydro-wind-photovoltaic hybrid system: A case study in the Yalong River basin
Chen Wu · Pan Liu · Qian Cheng · Zhikai Yang 等11人 · Applied Energy · 2025年1月 · Vol.383
摘要 水电可通过构建水-风-光混合能源系统,有效整合具有间歇性的风电和光伏(PV)发电。随着风电和光伏电站规模的不断扩大,扩大水电装机容量变得尤为关键。然而,传统的扩容数值方法需要高时间分辨率的输入数据以及复杂的模拟计算。为解决这一问题,本文提出一种无需高分辨率输入数据的解析方法,用于推导水电站最优扩容规模,便于实际应用并支持敏感性分析。首先,基于历史运行数据,分别采用多项式函数和线性函数对水电出力及风电-光伏弃电率随水电扩容规模的变化关系进行估计;其次,结合净现值法,建立考虑总发电量(包括水电...
解读: 该水风光混合系统容量优化方法对阳光电源具有重要参考价值。研究揭示的弃电率与容量扩展关系,可指导我们ST系列储能系统在水风光互补场景的容量配置策略。文中敏感性分析方法(电价敏感度为运维成本11倍)可应用于PowerTitan储能电站的经济性评估模型。特别是无需高时间分辨率数据的解析法,可集成到iSol...
DEST-GNN:一种用于多站点小时内光伏功率预测的双探索时空图神经网络
DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting
Yanru Yang · Yu Liu · Yihang Zhang · Shaolong Shu 等5人 · Applied Energy · 2025年1月 · Vol.378
准确的光伏发电(PV)功率预测对于电网实时平衡和储能系统优化至关重要。然而,由于光伏发电具有间歇性和波动性,实现高精度的光伏功率预测仍然是一项挑战。本文提出了一种用于多站点小时内光伏功率预测的新方法。与当前独立预测每个光伏电站功率的方法不同,我们通过考虑各光伏电站之间固有的时空相关性,同时预测所有站点的发电功率,并设计了一种新型图神经网络模型——DEST-GNN。在DEST-GNN中,采用无向图来表示这些光伏电站之间的依赖关系:每个光伏电站由一个节点表示,任意两个电站之间的时空相关性则由它们之间...
解读: 该多站点小时内光伏功率预测技术对阳光电源SG系列逆变器和ST储能系统具有重要应用价值。DEST-GNN通过时空图神经网络捕捉多电站关联性,可集成至iSolarCloud平台实现区域级功率预测,优化储能系统PowerTitan的充放电策略。其稀疏注意力机制可提升GFM/GFL控制算法的前瞻性调度能力,...
基于ZnTe:N/IWO复合透明背电极的双面超薄CdTe太阳能电池研究
Study on the Bifacial Ultrathin CdTe Solar Cell With ZnTe:N/IWO Composite Transparent Back Electrode
Xin Zhang · Xiutao Yang · Yujie Zheng · Yunpu Tai 等6人 · IEEE Journal of Photovoltaics · 2024年10月
双面半透明太阳能电池的制备是建筑集成光伏技术发展和叠层太阳能电池构建的一项有前景的技术。在本工作中,利用近空间升华系统制备了厚度为 1 微米的碲化镉(CdTe)多晶薄膜,同时分别采用磁控溅射和反应等离子体沉积技术沉积了氮掺杂碲化锌(ZnTe:N)层和钨掺杂氧化铟(IWO)层。在分析了薄膜的光学和电学性能并优化其沉积工艺后,研制出了一款背面光照转换效率为 7.1%的双面超薄太阳能电池,这是目前吸收层厚度不超过 1 微米的 CdTe 太阳能电池所达到的最佳背面光照效率。此外,通过运用 SCAPS 软...
解读: 该双面超薄CdTe电池技术对阳光电源建筑光伏一体化(BIPV)产品线具有重要参考价值。ZnTe:N/IWO复合透明背电极实现的双面发电与半透明特性,可启发SG系列组件级逆变器针对双面发电场景优化MPPT算法,提升背面光利用率。超薄轻质特性契合建筑幕墙、采光顶等BIPV应用需求,可结合iSolarCl...