← 返回
氢能与燃料电池 储能系统 ★ 5.0

优化澳大利亚偏远社区的混合能源系统:倾角在经济型绿色氢气生产中的作用

Optimizing hybrid energy systems for remote Australian communities: The role of tilt angle in cost-effective green hydrogen production

作者 Tushar Kanti Roy · Sajeeb Sah · Amanullah Maung Than Oo
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 391 卷
技术分类 氢能与燃料电池
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Hybrid energy systems (Type-A Type-B) for remote Australian communities are proposed.
语言:

中文摘要

摘要 本研究探讨了集成光伏(PV)面板、电池、燃料电池(FC)、电解槽(EL)和氢气储罐(HT)的混合能源系统(HES),以满足澳大利亚偏远社区的能源需求。分析了两种系统配置:A型(PV/Batt/FC/EL/HT)和B型(PV/FC/EL/HT),重点关注成本效益、能源可靠性和氢气产量。采用了多种优化技术,包括布谷鸟搜索算法、非支配排序遗传算法II(NSGA-II)、序列二次规划算法(SQPA)、花粉授粉算法、约束粒子群优化(PSO)和和声搜索算法,以确定最优系统配置。当采用NSGA-II进行优化时,A型系统表现出最高的成本效益,其实现的净现值成本(NPC)为226,500美元,电力平准化成本(LCOE)为0.193美元/kWh,氢气平准化成本(LCOH)为4.88美元/kg。A型系统中电池的引入显著提升了成本效益和能源可靠性。对于以氢气生产为重点的应用场景,SQPA实现了最高的年氢气产量,达4737 kg/年,这得益于更高的电解槽容量(14 kW)和燃料电池容量(18.63 kW)。研究发现,系统效率对光伏板倾角高度敏感,其中30°被确定为最优倾角;将倾角增加至70°可能导致系统成本上升高达75%。敏感性分析表明,提升各组件的效率对系统成本具有显著影响。例如,在A型系统中,将燃料电池效率从40%提高到60%,可使NPC降低40,000美元,LCOE降低0.04美元/kWh,LCOH降低0.1美元/kg。综合来看,调整光伏板倾角和组件效率可使整体系统成本降低高达40%。这些发现为设计兼顾电力与氢气生产的混合能源系统提供了战略性基础,适用于离网及偏远地区的可持续运行。

English Abstract

Abstract This study investigates hybrid energy systems (HESs) integrating photovoltaic (PV) panels, batteries, fuel cells (FCs), electrolyzers (ELs), and hydrogen tanks (HTs) to address the energy needs of remote Australian communities. Two configurations are analyzed: Type-A (PV/Batt/FC/EL/HT) and Type-B (PV/FC/EL/HT), focusing on cost-efficiency, energy reliability, and hydrogen production. Several optimization techniques, including the cuckoo search algorithm, non-dominated sorting genetic algorithm-II (NSGA-II), and sequential quadratic programming algorithm (SQPA), flower pollination algorithm, constrained PSO, and harmony search algorithm, are employed to determine optimal system configurations. Type-A emerges as the most cost-effective configuration when optimized with NSGA-II, achieving a net present cost (NPC) of $226,500, a levelized cost of electricity (LCOE) of $0.193/kWh, and a levelized cost of hydrogen (LCOH) of $4.88/kg. Battery integration in Type-A enhances both cost-efficiency and energy reliability. For hydrogen-focused applications, SQPA yields the highest hydrogen production at 4737 kg/year, supported by higher EL (14 kW) and FC (18.63 kW) capacities. System efficiency is found to be highly sensitive to PV tilt angle, with 30 ∘ identified as optimal. Increasing the tilt to 70 ∘ can raise system costs by up to 75 %. Sensitivity analyses reveal that improving component efficiencies dramatically impacts costs. For example, increasing fuel cell efficiency from 40 % to 60 % reduces NPC, LCOE, and LCOH by $40,000, $0.04/kWh, and $0.1/kg, respectively, especially in Type-A systems. Collectively, adjustments to PV tilt angles and component efficiencies can reduce overall costs by up to 40 %. These insights offer a strategic foundation for designing HESs that balance electricity and hydrogen generation, tailored for sustainable operation in off-grid and remote settings.
S

SunView 深度解读

该混合能源系统研究对阳光电源ST储能系统与SG逆变器协同优化具有重要价值。研究验证了电池储能可降低22%系统成本,与我司PowerTitan方案理念契合;PV倾角优化可降低75%成本的发现,可指导SG逆变器MPPT算法改进;氢储能系统的能量管理策略可借鉴至我司GFM控制技术,提升离网场景下多能互补系统的经济性。燃料电池效率提升20%可降低40%总成本的结论,为我司拓展氢能PCS产品线提供了市场依据,建议结合iSolarCloud平台开发光储氢一体化解决方案。