← 返回
储能系统技术 储能系统 微电网 ★ 5.0

考虑公平电动汽车充电、不确定性和故障情况的微电网能量管理系统实现

Implementation of a microgrid energy management system considering fair EV charging, uncertainties and contingencies: A multi-objective approach

作者 Derian C.Tairo · Jéssica Alice A.Silv · Juan Camilo López · Marcos J.Rider
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 396 卷
技术分类 储能系统技术
技术标签 储能系统 微电网
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Fair EV charging ensures an equitable energy distribution among vehicle owners.
语言:

中文摘要

摘要 微电网中的能量管理系统(EMS)在整合分布式能源资源(DERs)——如电池储能系统(BESSs)、光伏发电(PV)系统和电动汽车(EV)充电设备——时面临新的挑战。一个关键挑战是开发能够包含实时分析、三相系统以及并网与孤岛模式之间切换的模型,同时考虑光伏出力和负荷需求的不确定性。此外,在微电网中实现电动汽车充电的公平性对于用户满意度和系统性能至关重要。本文研究了一个多目标优化问题(MOOP),旨在最小化从主电网购电的运行成本以及电动汽车的未供电能量(ENS),并引入公平性指标以确保连接车辆之间的能量分配公平。该指标综合考虑了电动汽车在充电站(EVCS)的荷电状态(SoC)、能量容量以及可用充电时间等因素。所提出的模型在实用的物联网(IoT)框架下通过硬件在环(HIL)进行仿真,充分考虑了多种故障场景和不确定性因素。为验证所提方法的有效性,采用了来自坎皮纳斯州立大学(UNICAMP)三相交流微电网CAMPUSGRID的实际数据进行测试。结果生成了帕累托前沿,可用于选择多目标优化问题的最优折衷解。该解在显著降低电动汽车未供电能量的同时,实现了接近18%的运行成本节约。此外,公平性指标在荷电状态、能量容量和可用充电时间等竞争性因素下的测试表明,能量容量更大且充电需求更高的电动汽车会获得略微优先的充电权,从而在不同运行条件下仍能保证整体能量分配的公平性。

English Abstract

Abstract The integration of distributed energy resources (DERs), such as battery energy storage systems (BESSs), photovoltaic (PV) systems, and electric vehicle (EV) chargers, presents new challenges for energy management system (EMS) in microgrids . A key challenge is developing models that incorporate real-time analysis, three-phase systems, and transitions between grid-connected and isolated modes while accounting for uncertainties in PV generation and demand. Additionally, ensuring fairness in EV charging within microgrids is essential for user satisfaction and system performance . This work addresses a multi-objective optimization problem (MOOP) aimed at minimizing operational costs from the main grid and energy non-supplied (ENS) for EVs, incorporating a fairness index to ensure equitable energy distribution among connected vehicles. This index considers factors such as state of charge (SoC), energy capacities, and charging time availability at electric vehicle charging station (EVCS). The proposed model is simulated using Hardware-in-the-Loop (HIL) within a practical Internet of Things (IoT) framework, accounting for multiple contingencies and uncertainties. To evaluate the approach, data from CAMPUSGRID, a three-phase AC microgrid at Universidade Estadual de Campinas (UNICAMP), is utilized. The results present a Pareto front , enabling the selection of an optimal compromise solution for the MOOP. This solution achieves low ENS for EVs while yielding nearly 18 % savings in operational costs. Furthermore, the fairness index is tested with competing factors (SoC, energy capacities, and available charging time), demonstrating that EVs with higher energy capacity and demand are slightly favored, ensuring equitable energy distribution under diverse conditions.
S

SunView 深度解读

该多目标微网能源管理系统对阳光电源ST系列储能变流器、PowerTitan储能系统及充电桩产品线具有重要应用价值。研究中的三相系统实时优化、并离网切换及不确定性处理,可直接应用于iSolarCloud平台的智能调度算法。特别是EV公平充电指数(考虑SOC、容量、时间窗)为充电站产品开发提供了差异化服务策略。硬件在环验证方法可用于ST系列PCS的并网/离网模式测试,18%运营成本节约证明了储能系统参与微网优化的经济价值,支撑GFM/VSG控制技术在实际场景的推广应用。