← 返回
优化的氢-电池混合储能规划用于海岛微电网:一种应对多时间尺度不平衡的TSA-THC方法
Optimized hybrid hydrogen-battery storage planning for Island microgrids: A TSA-THC approach for addressing multi-time-scale imbalances
| 作者 | Qingzhu Zhang · Yunfei Mu · Hongjie Jia · Xiaodan Yu · Kai Hou |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 398 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 微电网 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel planning method based on TSA and THC for HHBS is proposed. |
语言:
中文摘要
摘要 离网型海岛微电网(OGIM)中可再生能源的高度波动性在多个时间尺度上对电力平衡构成了重大挑战。氢-电池混合储能(HHBS)能够在不同时间尺度上有效缓解电力不平衡问题。然而,HHBS的规划通常需要考虑全年运行情况,导致因变量数量庞大而带来显著的计算复杂性。为应对这一挑战,本文提出一种新颖的规划方法,通过融合时间序列聚合(TSA)和时间尺度压缩(THC),在不牺牲规划精度的前提下优化计算效率。该方法在保留氢储能(HS)长运行周期特性的同时,最大限度减少与电池相关的变量数量,从而确保计算可行性与精度之间的平衡。其中,THC方法通过压缩电池运行的时间尺度以提高计算效率,而TSA则指导运行序列,保证电池规划的精确性。本文构建了一个HHBS规划模型,用于在不同时间尺度上协同优化HHBS容量,最小化包括投资、运行、维护、弃电、切负荷以及燃料成本在内的综合成本。针对海岛上的源-荷不确定性,采用区间建模方法,并通过区间优化(IO)方法将不确定规划模型转化为确定性模型。在中国南海离网型海岛微电网上的案例研究验证了所提方法的有效性,与全年时间尺度方法相比,计算时间减少了50.33%,且HHBS容量误差不超过0.87%。
English Abstract
Abstract The high volatility of renewable energy presents significant challenges for electricity balancing in off-grid island microgrids (OGIM) across multiple time scales. Hybrid hydrogen-battery storage (HHBS) offers an effective solution to mitigate electricity imbalances over various time horizons. However, planning HHBS typically requires year-round operational considerations, leading to substantial computational complexity due to the large number of variables. To address this challenge, a novel planning method that integrates time series aggregation (TSA) and time horizon compression (THC) is proposed to optimize computational efficiency without compromising planning accuracy. This method preserves the long operational cycle characteristics of hydrogen storage (HS) while minimizing battery-related variables, thus ensuring a balance between computational feasibility and accuracy. The THC method reduces the battery operation time scale to increase computational efficiency, whereas the TSA guides the operation sequence, ensuring precise battery planning. An HHBS planning model is developed to co-optimize HHBS capacity across different time scales, minimizing combined costs, including investment, operation, maintenance, curtailment , load shedding, and fuel costs. Source-load uncertainty on islands is modelled using intervals, and the uncertain planning model is converted into a deterministic model via the interval optimization (IO) method. Case studies on the OGIM in the South China Sea validate the effectiveness of the proposed method, reducing the computational time by 50.33 % and limiting the HHBS capacity error to no more than 0.87 % compared with the year-round time scale method.
S
SunView 深度解读
该氢-电混合储能规划方法对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。TSA-THC算法可集成至iSolarCloud平台,实现海岛微电网多时间尺度能量管理优化,将计算效率提升50%以上。氢储能长周期特性与电池短周期响应的协同配置,可指导阳光电源开发GFM控制策略下的混合储能系统解决方案,特别适用于高比例新能源海岛场景,提升系统经济性和供电可靠性,为离网微电网项目提供差异化竞争优势。