← 返回
基于不确定性量化的鲁棒锂离子电池容量估计方法:应对时间序列数据掩蔽挑战的渐进学习框架
Robust capacity estimation with uncertainty quantification for li-ion batteries under temporal data masking challenges: A progressive learning approach
| 作者 | Tengwei Pang · Guodong Fan · Boru Zhou · Yansong Wang · Yujie Wang · Xi Zhang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A progressive learning framework is proposed to address challenges in lithium-ion battery capacity estimation caused by cloud data masking. |
语言:
中文摘要
准确估计锂离子电池容量对于可靠性管理至关重要,但由于时间序列数据掩蔽问题的存在,该任务面临严峻挑战。时间序列掩蔽是实际云应用中普遍存在的现象,会导致时序数据缺失和数据质量退化。为解决这一问题,本文提出一种渐进式学习框架,该框架构建了一条数据质量感知的学习路径,通过逐步生成并引入人工掩蔽的低质量样本,仅利用高质量实验室数据即可实现模型的鲁棒训练。该框架融合了动态采样与自适应重采样策略,以增强模型对数据偏斜的鲁棒性。此外,通过在同源充电段上进行隐式集成学习,高效实现了具有强物理可解释性的不确定性量化,避免了贝叶斯方法或基于集成的方法所带来的计算瓶颈。本方法在LFP、NCA和NCM数据集上进行了验证,在未掩蔽数据上的均方根误差(RMSE)分别为0.2170%、0.1924%和0.1326%。当50%的数据被掩蔽时,RMSE仅略有上升,最大绝对增幅仅为0.0303%,即使掩蔽比例高达70%,模型仍能保持较高的估计精度。该框架还展现出良好的通用性,可适用于多种深度学习架构。本研究有效弥合了电池管理系统中实验室模型与实际部署之间的差距。
English Abstract
Abstract Accurate estimation of lithium-ion battery capacity is critical for reliability management but it faces challenges due to temporal data masking, a prevalent issue in real-world cloud applications causing time-series masking and data degradation. To address this, we propose a progressive learning framework that constructs a data-quality-aware learning pathway, enabling robust training solely on high-quality laboratory data by progressively generating and incorporating artificially masked low-quality samples. The framework integrates dynamic sampling and adaptive resampling strategies to enhance model robustness against data skewness. Additionally, uncertainty quantification with strong physical interpretability is efficiently achieved through implicit ensemble learning on homologous charging segments, avoiding the computational bottlenecks of Bayesian or ensemble-based methods. Validated on the LFP, NCA, and NCM datasets, our method achieves RMSEs of 0.2170 %, 0.1924 %, and 0.1326 % on clean data, respectively. When 50 % of the data is masked, the RMSEs increase only slightly, with the maximum absolute increase being just 0.0303 %, and the model maintains high accuracy even with masking ratios as high as 70 %. The framework also generalizes well across different deep learning architectures. This work bridges the gap between laboratory models and real-world deployment for battery management systems.
S
SunView 深度解读
该渐进式学习框架对阳光电源ST系列储能变流器及PowerTitan系统的电池管理具有重要价值。针对iSolarCloud云平台实际应用中的数据缺失和时序遮蔽问题,该方法仅需高质量实验室数据即可实现鲁棒容量估计,在50%数据遮蔽下RMSE仅增0.03%。其隐式集成的不确定性量化技术可避免贝叶斯方法的计算瓶颈,适合边缘侧BMS部署。可应用于储能系统预测性维护,提升电池全生命周期管理可靠性,并为充电桩产品的电池健康诊断提供算法支撑,缩短实验室模型到实际部署的工程化周期。