← 返回
高功率密度碳化硅MOSFET驱动器设计:集成有源米勒钳位的600kHz开关应用
Optimal Configuration of ESS in Distribution Network Considering Generation of PV-Load Time Series Scenarios
| 作者 | Xiaolong Xiao · Mingming Shi · Fan Wu · Yukai Wei · Bo Zhao · Fang Zhang |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 储能系统 光伏-负荷典型场景 配置模型 NSGA - III算法 熵权法 |
语言:
中文摘要
碳化硅MOSFET高频开关特性对驱动电路提出严格要求,传统驱动方案在高频下存在米勒效应和寄生震荡问题。本文提出一种集成有源米勒钳位的高性能驱动电路,支持600kHz开关频率,有效抑制dv/dt干扰和栅极震荡。
English Abstract
With the accelerating application demand for new energy-based power systems, a energy storage system (ESS) optimization configuration method is proposed to fully consider the load demand and the uncertainty of photovoltaic (PV) output and improve the adaptability of the ESS configuration scale. Firstly, the Gaussian kernel function of the kernel method is used to map the temporal variation characteristics of the PV output scenario to establish a comprehensive evaluation index scenario for the uncertainty and temporal correlation of PV-Load. The iterative self-organizing data analysis algorithm (ISODATA) is used to optimize clustering of the comprehensive evaluation index scenario to generate PV-Load typical scenarios. A distribution network ESS configuration model is constructed with the objectives of minimizing voltage fluctuation indicator, line loss rate, and minimizing ESS investment cost. To solve the high-dimensional multi-objective functions in the model, an non-dominated sorting genetic algorithm-III (NSGA-III) was employed, and the optimal solution is selected by using the entropy weight method (EWM). Finally, the proposed method and model are analyzed and verified by case simulation, and the results show that the proposed model and method can comprehensively consider the actual operating characteristics of PV and load, and can effectively formulate the ESS configuration scale and operation strategy in the distribution network.
S
SunView 深度解读
该SiC驱动技术可应用于阳光电源ST系列储能变流器的功率模块驱动设计。通过有源米勒钳位技术提升SiC MOSFET的开关可靠性,支持更高的开关频率和功率密度,降低磁性元件体积,实现储能系统的高效率和紧凑设计。