← 返回
可重构智能表面辅助6G网络太赫兹通信:全面综述
RIS-Assisted Terahertz Communications for 6G Networks: A Comprehensive Overview
| 作者 | Alok Kumar · Sanjeev Sharma · M. Hemanta Kumar · Ghanshyam Singh |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 机器学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 太赫兹通信 多输入多输出技术 可重构智能表面 人工智能与机器学习 系统设计挑战 |
语言:
中文摘要
太赫兹通信系统中多输入多输出技术与可重构智能表面的整合已成为应对下一代无线网络挑战和利用机遇的有前途方法。本技术综述系统提供基于多输入多输出的可重构智能表面支持太赫兹通信最新研究和发展,专注于这项创新技术的潜在研究机遇、挑战和新兴应用。此外本文探讨整合多输入多输出与可重构智能表面改善链路可靠性的综合效益及相关系统级设计挑战。进一步讨论基于多输入多输出的可重构智能表面支持太赫兹通信各方面,如信道建模、信道估计、波束成形技术、波束分裂效应资源分配策略和性能评估指标。此外还讨论人工智能和机器学习在可重构智能表面赋能太赫兹无线通信系统设计中的作用。
English Abstract
The integration of multiple-input multiple-output (MIMO) technology with reconfigurable intelligent surfaces (RIS) in Terahertz (THz) communication systems has emerged as a promising approach to address the challenges and exploit the opportunities in next-generation wireless networks. This technical review provides a systematic state-of-the-art research and developments toward MIMO-based RIS-supported THz communication, systems focus on the potential research opportunities, challenges, and emerging applications of this innovative technology. Further, this paper explores the combined benefits of integrating MIMO with RIS to improve link reliability, along with the associated system-level design challenges. Furthermore, we discuss various aspects of MIMO-based RIS-supported THz communication, such as channel modeling, channel estimation, beamforming techniques, beam split effect resource allocation strategies, and performance evaluation metrics. Moreover, the role of artificial intelligence and machine learning (AI/ML) in the design of RIS-empowered THz wireless communication systems is also discussed.
S
SunView 深度解读
该6G太赫兹通信技术对阳光电源未来通信架构具有前瞻意义。虽然当前阳光产品基于4G/5G通信,但该太赫兹和智能表面技术为下一代高速低延迟通信奠定基础。阳光可跟踪该技术发展,为未来大规模电站和虚拟电厂的超高速数据传输做技术储备,支持实时大数据分析和AI应用,提升系统智能化水平和竞争力。