← 返回
储能系统技术 储能系统 可靠性分析 ★ 4.0

影响学生学业表现的因素:混合数据因子分析和多元线性回归分析的组合

Factors Affecting Student Academic Performance: A Combined Factor Analysis of Mixed Data and Multiple Linear Regression Analysis

作者 Mohamed El Jihaoui · Oum El Kheir Abra · Khalifa Mansouri
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★ 4.0 / 5.0
关键词 学生学业表现 因素分析 多元线性回归 影响因素 可持续教育
语言:

中文摘要

理解学生学业表现是发展可持续教育实践造福学生、教师、政策制定者和社会的基石。该分析直接影响学生参与和促进可持续实践的能力,从而塑造其未来学业成功。虽然许多研究专注于基于特征集预测学生表现,本研究采用将这些特征简化为因子并分析其影响的方法。旨在使用混合数据因子分析和多元线性回归的组合方法识别中学教育系统中影响学生表现的因素。分析基于1073450个观测值的稳健可靠大数据集,涵盖定性和定量特征。混合数据因子分析识别四个潜在因子:先前学业表现、学业延迟、社会经济地位和班级环境,所有这些因子具有良好到出色可靠性,Cronbach Alpha值在0.809到0.930之间。将这些因子输入多元线性回归产生解释CGPA方差88.53%的稳健模型,表明强拟合。先前学业表现因子作为最强预测因子,占解释方差的76.6%。学业延迟其次,解释14.34%方差。社会经济地位贡献6.02%,班级环境添加3.03%,反映较小但有意义影响。所有预测因子统计显著,确认其在影响学生表现中的关键作用。从该研究获得的洞察在教育领域极其重要,使教师和教育领导者能够早期识别风险学生并制定针对影响其表现因素的定向干预,旨在增强学习成果、改善教育实践和促进可持续教育。

English Abstract

Understanding student academic performance is a cornerstone for developing sustainable educational practices that benefit students, teachers, policymakers, and society. This analysis directly impacts students’ ability to engage in and promote sustainable practices, thereby shaping their future academic success. While many studies focus on predicting student performance based on a set of features, our study takes an approach by reducing these features into factors and analyzing their impact. We aim to identify the factors influencing student performance within the middle school education system using a combined approach of Factor Analysis for Mixed Data (FAMD) and Multiple Linear Regression (MLR). Our analysis is based on a robust and reliable large dataset of 1,073,450 observations, encompassing qualitative and quantitative features. FAMD analysis identified four underlying factors: prior academic performance, academic delay, socioeconomic status, and class environment; all these factors have good to excellent reliability, with Cronbach’s Alpha values ranging from 0.809 to 0.930. Feeding these factors into the MLR produces a robust model that explains 88.53% of the variance in the CGPA, indicating a strong fit. Prior Academic Performance factor emerges as the most powerful predictor, accounting for 76.6% of the explained variance. Academic Delay follows, explaining 14.34% of the variance. Socioeconomic Status contributes 6.02%, and Class Environment adds 3.03%, reflecting smaller but meaningful impacts. All predictors are statistically significant (p <0.001), confirming their critical roles in influencing student performance (CGPA). The insights gained from this study are critically important in the field of education. They enable teachers and educational leaders to identify at-risk students early and develop targeted interventions that address the factors influencing their performance. This approach aims to enhance learning outcomes, improve educational practices, and promote sustainable education.
S

SunView 深度解读

该学生表现预测模型对阳光电源人才培养体系具有借鉴意义。阳光作为技术密集型企业,人才是核心竞争力,该多因素分析方法可应用于阳光校企合作和内部培训项目。阳光可构建员工技能成长预测模型,早期识别高潜力人才和需要支持的员工,制定个性化培养计划,提升人才培养效率和员工满意度,增强企业技术创新能力和可持续发展能力。