← 返回
氢能与燃料电池 储能系统 ★ 4.0

基于数据驱动和改进光谱算法的质子交换膜燃料电池堆功率密度优化

Power density optimization for proton exchange membrane fuel cell stack based on data-driven and improved light spectrum algorithm

语言:

中文摘要

摘要 作为一种绿色能量转换装置,质子交换膜燃料电池(PEMFC)堆的功率性能由实际运行参数决定。根据目标需求对PEMFC的功率密度及其相应操作参数进行优化至关重要。本文提出了一种结合随机森林算法(RF)与改进的光谱优化算法(ILSO)的PEMFC堆功率密度全局优化策略。基于PEMFC数学模型的仿真结果构建数据集,并用于训练一种数据驱动的代理模型。代理模型的输入变量包括工作温度、阳极压力、阴极/阳极相对湿度和电流密度,输出为功率密度。预测性能结果显示,训练集中平均绝对误差(MAE)、均方误差(MSE)和决定系数(R²)分别为0.007、0.000097和0.9991。与原始模型相比,该代理模型具有较高的精度,相对误差仅为0.86%。此外,代理模型的平均优化时间为1716.3秒,较原始模型减少了44.8%。通过采用该策略,获得了1.211 W/cm²的最优功率密度,并预测了在不同目标功率下的相应操作参数。

English Abstract

Abstract As a green power conversion device, the power performance of proton exchange membrane fuel cell (PEMFC) stack is determined by the actual operating parameters. The optimization of the power density and corresponding operating parameters of the PEMFC according to the target demand is essential. In this paper, a global optimization strategy for the power density of PEMFC stack is proposed, which combines the random forest algorithm (RF) and the improved light spectrum optimization algorithm (ILSO). A dataset is constructed based on the simulation results of the PEMFC mathematical model and used to train a data-driven surrogate model. The input variables of the surrogate model are identified, including operating temperature, anode pressure, cathode/anode relative humidity and current density, and the output is power density. Prediction performance shows that the mean absolute error (MAE), mean square error (MSE), and coefficient of determination (R 2 ) in the training set are 0.007, 0.000097 and 0.9991, respectively. The surrogate model has considerable accuracy compared to the original model with a relative error of 0.86 %. Additionally, the average optimization time of the surrogate model is 1716.3 s, which is reduced by 44.8 % compared to the original model. By employing this strategy, an optimal power density of 1.211 W/cm 2 is obtained and the corresponding operating parameters under various target powers are predicted.
S

SunView 深度解读

该PEMFC功率密度优化技术对阳光电源氢能储能系统具有重要借鉴价值。文中数据驱动建模与智能优化算法结合的思路,可应用于ST系列PCS多参数协同优化,提升能量转换效率。随机森林代理模型将优化时间缩短44.8%,与iSolarCloud平台预测性维护理念高度契合。温度、压力、湿度等多维参数寻优方法,可迁移至储能系统热管理与功率调度策略,推动氢储能与电化学储能融合方案开发,增强阳光电源在新型储能领域的技术竞争力。