← 返回
直流配电网中Buck和Boost DC-DC变换器的线性自抗扰控制电压控制器
Linear Active Disturbance Rejection Control-Based Voltage Controller for Buck and Boost DC/DC Converters
| 作者 | Asimenia Korompili · Oemer Ekin · Marija Stevic · Veit Hagenmeyer · Antonello Monti |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 DC-DC变换器 SiC器件 构网型GFM |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 直流配电网 电压控制器 线性自抗扰控制 虚拟阻抗电流限制器 硬件在环实现 |
语言:
中文摘要
直流配电网因高效集成变流器接口分布式能源DER近期获得研究关注。本文提出Buck和Boost DC-DC DER接口变换器的电压控制器,工作在电压控制模式作为直流构网变换器。提出线性自抗扰控制L-ADRC模型,包含用于状态和扰动估计的增强卡尔曼滤波器、自适应状态参考轨迹生成器和作为反馈控制器的线性二次调节器。L-ADRC模型按广义ADRC概念制定,使电压控制器适用于非最小相位NMP类变换器如电压控制模式的Boost DC-DC变换器,且适用于匹配和不匹配扰动,与文献中主要存在的原始ADRC相反。所提L-ADRC模型在非规范形式的制定便于采用基于模型的估计和反馈控制方法,其性能通过设计多个参数确定。这为电压控制器设计提供更多自由度,超越基于线性扩展状态观测器带宽和比例误差反馈控制器缩放因子的常见L-ADRC制定设计。此外,变换器状态的物理意义允许集成额外控制功能依赖变换器电气量增强电压控制器性能。为此,在L-ADRC模型中集成基于虚拟阻抗的电流限制器,防止变换器开关高电流。仿真和硬件在环实施验证L-ADRC并与PID电压控制器对比分析性能。
English Abstract
DC distribution grids have recently gained research attention for the efficient integration of converter-interfaced distributed energy resources (DER). This paper presents a voltage controller for the buck and boost DC/DC DER-interfacing converters that operate in voltage control mode, acting as DC grid-forming converters. A linear active disturbance rejection control (L-ADRC) model is proposed, consisting of an augmented Kalman filter for the state and disturbance estimation, an adaptive state reference trajectory generator and a linear quadratic regulator as feedback controller. This L-ADRC model is formulated according to the generalised ADRC concept, making the voltage controller applicable to converters of the non-minimum phase (NMP) class, like the boost DC/DC converters in voltage control mode, and suitable for matched and mismatched disturbances, opposite to the original ADRC, which exists mostly in literature of converter controllers. The formulation of the proposed L-ADRC model in the non-canonical form facilitates the employment of model-based estimation and feedback control methods, whose performance is determined through the design of several parameters. This provides more degrees-of-freedom in the design of the voltage controller, beyond the design of the common L-ADRC formulation based on the bandwidth of the linear extended state observer and the scaling factor of a proportional error feedback controller. In addition, the physical significance of the converter’s states allows the integration of additional control functions, relying on the electrical quantities of the converter, for the enhancement of the performance of the voltage controller. For this, a virtual impedance-based current limiter is integrated in the L-ADRC model, which is necessary for preventing high currents at the converter’s switches. Moreover, the formulation of the adaptive state reference trajectory of the L-ADRC model according to the estimated disturbance provides a smooth state reference to the state feedback controller and enhances the robustness of the voltage controller against disturbances. The L-ADRC is designed based on both frequency and time domain analyses, contrary to the design approaches of ADRC converter controllers in literature. It is validated in a hardware-in-the-loop implementation and the performance is analysed in simulation against a PID voltage controller.
S
SunView 深度解读
该自抗扰控制技术对阳光电源直流储能系统具有重要应用价值。阳光ST储能变流器在直流侧采用DC-DC变换器进行电压变换和功率控制。该L-ADRC方法的扰动估计和自适应补偿能力可显著提升阳光直流变换器的抗干扰性能。在大型储能电站中,多台储能变流器并联运行时面临母线电压波动和负荷突变挑战。该研究的非最小相位系统控制方法可优化阳光Boost变换器在构网模式下的电压控制,提升系统稳定性和快速响应能力。结合阳光三电平拓扑和SiC器件技术,该L-ADRC控制算法可提升储能系统动态性能和效率,支持直流微电网和数据中心等高可靠性应用场景。