← 返回
结合内部电池物理特性的最优构网型储能系统管理
Optimal grid-forming BESS management incorporating internal battery physics
| 作者 | Yuanbo Chen · Kedi Zheng · Cheng Feng · Junling Huang · Hongye Guo · Haiwang Zhong |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 385 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 构网型GFM |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Propose an operation-oriented BESS management to optimize grid-forming provision. |
语言:
中文摘要
摘要 通过电池储能系统(BESS)提供构网服务(GFS)对于现代电网中日益增长的可再生能源并网至关重要。然而,GFS响应与电池物理特性之间的快速交互给构网型BESS运行管理带来了重大挑战。本文研究了考虑内部电池物理特性的构网型BESS管理方法。我们首先建立了一个基于物理机理的模型,以准确刻画BESS在提供GFS过程中的可用功率能力及老化动态特性。基于该物理模型,本文提出了一种两阶段随机优化问题,用于在日前阶段确定GFS控制系数并制定BESS功率调度计划,同时考虑电网频率的不确定性。进一步地,设计了一种实时功率调节方法,以实现调度结果的执行,并兼顾电池内部物理特性与外部电网频率变化的实际约束。案例研究表明,所提出的管理方法能够有效支持构网型BESS的最优运行,在不同的电网侧条件和BESS状态之下,自适应地实现高水平的GFS性能与BESS运行收益。
English Abstract
Abstract Providing the grid-forming service (GFS) via the battery energy storage system (BESS) is essential for the increasing integration of renewable energy in modern grids. However, rapid interactions between GFS responses and battery physics pose a significant challenge in managing grid-forming BESS operations. This paper explores the grid-forming BESS management considering internal battery physics. We first develop a physics-based model that captures the authentic available power and aging dynamics of BESS during GFS provision. Based on the physics-based model, we propose a two-stage stochastic optimization problem to determine the GFS coefficients and schedule the BESS power during the day-ahead period considering uncertain grid frequency. A real-time power regulation method is further designed to implement the scheduling results, considering the practicality of both internal battery physics and external grid frequency. Case studies reveal that the proposed management can support optimal grid-forming BESS operations effectively, achieving high GFS performance and BESS profitability adaptively under various grid-side conditions and BESS statuses.
S
SunView 深度解读
该研究对阳光电源ST系列储能变流器及PowerTitan系统的构网型控制策略具有重要参考价值。通过建立电池物理模型优化GFM服务系数,可提升我司储能系统在高比例新能源电网中的频率支撑能力和经济性。研究中的两阶段随机优化方法可集成至iSolarCloud平台,实现日前调度与实时功率调节的协同优化,同时考虑电池老化特性延长系统寿命。该技术路线与我司VSG控制技术高度契合,可进一步增强PowerTitan在独立微网及弱电网场景下的构网能力,为储能系统提供差异化竞争优势。