← 返回
光伏发电技术 储能系统 充电桩 MPPT ★ 5.0

基于优化ANFIS的鲁棒非线性控制在太阳能离网电动汽车充电站中的应用

Optimized ANFIS-Based Robust Nonlinear Control of a Solar Off-Grid Charging Station for Electric Vehicles

作者 Bibi Tabassam Gul · Iftikhar Ahmad · Habibur Rehman · Ammar Hasan
期刊 IEEE Access
出版日期 2025年1月
技术分类 光伏发电技术
技术标签 储能系统 充电桩 MPPT
相关度评分 ★★★★★ 5.0 / 5.0
关键词 离网电动汽车充电站 最大功率点跟踪 条件式超扭曲滑模控制器 灰狼优化算法 动态响应
语言:

中文摘要

本文旨在提升由光伏板和电池供电的离网电动汽车充电站的性能。采用自适应神经模糊推理系统实现最大功率点跟踪,以优化光伏输出;设计了一种基于条件的超螺旋滑模控制器(CST-SMC),有效抑制了传统滑模控制中的抖振与积分饱和问题。控制器参数通过灰狼优化算法整定,并通过Lyapunov方法证明系统全局稳定性。仿真与基于Delfino F28379D的硬件在环实验验证了方案有效性。结果表明,所提CST-SMC相较传统ST-SMC具有更快上升时间、更小超调与更短调节时间,且在恒流恒压阶段响应更平滑,显著提升了充电系统的动态性能与可靠性。

English Abstract

This paper attempts to improve the performance of an off-grid electric vehicle charging station powered by photovoltaic (PV) panels and batteries. To ensure optimal performance of the PV panels, maximum power point tracking (MPPT) is implemented using an adaptive neuro-fuzzy inference system. A robust control technique is designed for regulating the currents and voltages within the system. Conventional sliding mode controllers (SMCs) are prone to chattering, and while the inclusion of a super-twisting component mitigates this issue, it introduces windup problems. To address these challenges, we propose a conditioned-based super-twisting SMC (CST-SMC), which effectively resolves the windup issue. The controller gains are optimized using the grey wolf optimization algorithm, and global stability is demonstrated through Lyapunov stability analysis. The proposed system is simulated in MATLAB and experimentally validated using a Delfino F28379D-based hardware-in-the-loop setup. Numerical results show that the proposed CST-SMC has a faster rise time (0.0564 sec), less overshoot (0.00389), and a shorter settling time (0.4256 sec) compared to the conventional ST-SMC, which has a slower rise time (0.137 sec), greater overshoot (0.38095), and a longer settling time (3.8071 sec). Thus, the system’s dynamic response is improved. Furthermore, the proposed CST-SMC controller provides smoother regulation during the constant current and constant voltage stages, unlike the ST-SMC, which exhibits chattering. The improved performance makes the CST-SMC more reliable for EV charging.
S

SunView 深度解读

该研究的优化ANFIS-MPPT算法与CST-SMC控制技术对阳光电源光储充一体化产品具有重要应用价值。在SG系列光伏逆变器中,ANFIS自适应算法可提升复杂工况下的MPPT效率,优于传统P&O算法;在ST系列储能变流器中,超螺旋滑模控制可有效抑制抖振,提升双向DC-DC变换器的动态响应与电池充放电精度;在充电桩产品线,CST-SMC的恒流恒压平滑切换特性可优化车载OBC协同控制,减少充电过程的电压波动。灰狼优化算法的参数整定方法可集成至iSolarCloud平台,实现控制器参数的自适应优化。该技术对阳光电源离网光储充系统的鲁棒性与可靠性提升具有直接工程价值。