← 返回
最大功率点跟踪控制器的优化以提升太阳能光伏系统性能
Optimization of maximum power point tracking controllers for enhanced performance in solar photovoltaic systems
| 作者 | S.Yamun · M.Sreedhar |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 302 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 MPPT |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Optimized MPPT method proposed to enhance solar PV system performance and efficiency. |
语言:
中文摘要
摘要:太阳能是一种关键的可再生能源,但光伏(PV)系统的低效率限制了能量的提取。为了最大化输出功率,最大功率点跟踪(MPPT)控制器至关重要。本文提出了一种优化的MPPT方法,以提升太阳能光伏系统的性能。该技术结合了河马优化算法(Hippopotamus Optimization, HO)与卷积Kolmogorov–Arnold网络(Convolutional Kolmogorov–Arnold Networks, CKAN)的优势,构建了一个称为HO-CKAN的模型。本研究的主要目标是降低跟踪误差、提高发电效率,并减少太阳能光伏系统中的功率损耗。HO算法在不同工况下优化MPPT性能,而CKAN则能够精确预测光伏输出功率,从而实现自适应控制,提升能量提取能力和系统稳定性。所提出的HO-CKAN方法在MATLAB中实现,并与遗传算法(GA)、粒子群优化算法(PSO)以及自适应樽海鞘群算法(ASSA)进行对比。实验结果表明,所提方法实现了3.4 × 10^4 W的最高平均输出功率、3.61 × 10^4 J的总能量采集量以及108 W的平均负载功率,在功率输出和能量效率方面均优于现有方法。与现有技术相比,所提出的HO-CKAN方法能有效优化MPPT性能,显著提升太阳能光伏系统的发电效率与运行稳定性。
English Abstract
Abstract Solar energy is a key renewable source, but the low efficiency of photovoltaic (PV) systems limits energy extraction. To maximize power, a maximum power point tracking (MPPT) controller is essential. This manuscript proposes an optimized MPPT method to enhance solar PV system performance. The proposed technique integrates the capabilities of Hippopotamus Optimization (HO) and Convolutional kolmogorov–arnold networks (CKAN), forming a model termed HO-CKAN. The primary intent of this work is to lower the tracking errors, improve the power generation efficiency, and reduce power loss on solar PV systems. The HO algorithm optimizes MPPT performance under varying conditions, while CKAN predicts PV power accurately, enabling adaptive control for improved energy extraction and system stability. The proposed HO–CKAN is implemented in MATLAB and compared with Genetic Algorithms (GA), particle swarm optimization (PSO), and Adaptive salp swarm algorithm (ASSA). The proposed technique establishes the highest average power output of 3.4 × 10 4 W, total energy harvested of 3.61 × 10 4 J, and average load power of 108 W, outperforming existing approaches in terms of power delivery and energy efficiency. The proposed HO-CKAN approach effectively optimizes MPPT performance, enhancing power generation efficiency and stability in solar PV systems compared to existing methods.
S
SunView 深度解读
该HO-CKAN优化MPPT技术对阳光电源SG系列光伏逆变器具有重要应用价值。论文提出的河马优化算法结合卷积网络可显著降低跟踪误差、提升发电效率,与阳光电源现有多路MPPT技术形成互补。该方法在复杂工况下的自适应控制能力可应用于1500V高压系统,结合iSolarCloud平台实现预测性功率优化。研究中的智能算法思路可启发阳光电源在储能系统PCS控制、虚拟同步发电机VSG功率调度等场景的算法迭代,进一步提升系统能量转换效率和电网适应性。