← 返回
用于光伏系统MPPT充电控制器开发的软件在环、硬件在环和功率硬件在环实验平台
Experimental platforms consisting of software-in-the-loop, hardware-in-the-loop and power-hardware-in-the-loop for developing MPPT charge controller for photovoltaic system
| 作者 | Hoai Phong Nguyen · Thuan Thanh Nguyen · Minh Phuong Lea · Thanh Ngoc Tranb |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 298 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 MPPT |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Propose SIL HIL and PHIL experimental model of the [MPPT](https://www.sciencedirect.com/topics/engineering/maximum-power-point-tracking "Learn more about MPPT from ScienceDirect's AI-generated Topic Pages")charge controller. |
语言:
中文摘要
摘要 硬件在环(Hardware-In-the-Loop, HIL)和功率硬件在环(Power-Hardware-In-the-Loop, PHIL)仿真能够将软件与硬件相结合,以尽可能接近真实环境的条件来测试和优化设备或技术系统。本文介绍了针对光伏系统最大功率点跟踪(Maximum-Power-Point-Tracking, MPPT)充电控制器所构建的实时仿真技术,包括软件在环(Software-In-the-Loop, SIL)、HIL和PHIL模型。SIL、HIL和PHIL仿真技术在MPPT控制器的产品开发过程中起着逐级递进的作用。所有模型均基于Matlab平台软件构建,并在OPAL-RT实时仿真器上运行。所提出的SIL模型包含光伏系统(PV)、降压变换器(buck converter)、MPPT控制器和蓄电池,其在实时仿真器上执行时考虑了整个系统的计算时间。与此同时,HIL模型用于验证基于DSP F28379D微控制器实现的MPPT控制器,而PHIL模型则可用于同时验证降压变换器电路和实际的MPPT控制器。SIL模型的结果表明,该模型的计算时间可以进行调整,从而使SIL系统满足实时仿真的要求;而HIL和PHIL模型则具备验证系统中实际设备部件的能力。因此,本文所提出的用于光伏系统MPPT充电控制器的SIL、HIL和PHIL模型是在实际MPPT控制器开发过程中值得考虑的一项关键技术。
English Abstract
Abstract Hardware-In-the-Loop (HIL) and Power-Hardware-In-the-Loop (PHIL) simulations enable the combination of software and hardware to test and optimize devices or technical systems under conditions as close to real life as possible. This paper presents the real-time simulation techniques consisting of Software-In-the-Loop (SIL), HIL and PHIL models of the Maximum-Power-Point-Tracking (MPPT) charge controller for photovoltaic system. The SIL, HIL, PHIL simulation techniques play a role as a successive stage of the product development process of the MPPT controllers. All models are built on Matlab platform software and run on the OPAL-RT real-time simulator. The proposed SIL model consisting of Photovoltaic system (PV), buck converter, MPPT controller and battery is executed on the real-time simulator considering the computation time of the entire system. Meanwhile, the HIL model allows to verify the MPPT controller which is built on DSP F28379D microcontroller, and the PHIL model allows to verify both buck converter circuit and real MPPT controller. The results of the SIL model show that the computation time of the model can be adjusted so that the SIL system meets the real-time simulation requirements, while the HIL and PHIL models are capable of verifying the real equipment parts of the system. Therefore, the proposed SIL, HIL and PHIL models of the MPPT charge controller for photovoltaic system are a technique worth considering in the development of real MPPT controller.
S
SunView 深度解读
该SIL/HIL/PHIL仿真验证技术对阳光电源SG系列光伏逆变器及ST储能PCS的MPPT控制器开发具有重要价值。通过OPAL-RT实时仿真平台可缩短产品迭代周期,在SG250HX等高功率逆变器多路MPPT算法优化中,HIL可提前验证DSP控制策略;在PowerTitan储能系统的PCS功率变换器测试中,PHIL技术能降低实物测试风险。该分级验证方法可应用于iSolarCloud平台的数字孪生建模,提升智能运维的预测准确性,建议在三电平拓扑及SiC器件的新产品开发流程中引入此技术体系。