← 返回
光伏发电技术 储能系统 MPPT ★ 5.0

基于ANFIS的最大功率点跟踪控制器在太阳能光伏系统中的潜力研究

Investigating the Potential of an ANFIS-Based Maximum Power Point Tracking Controller for Solar Photovoltaic Systems

作者 Yavuz Türkay · Ahmet Gürkan Yüksek
期刊 IEEE Access
出版日期 2025年1月
技术分类 光伏发电技术
技术标签 储能系统 MPPT
相关度评分 ★★★★★ 5.0 / 5.0
关键词 最大功率点跟踪器 光伏模块 自适应神经模糊推理系统 模糊规则 仿真
语言:

中文摘要

最大功率点跟踪(MPPT)技术对提升光伏(PV)系统效率具有重要作用。本文设计并建模了一种基于自适应神经模糊推理系统(ANFIS)的MPPT控制器,旨在不同环境条件下最大化PV模块的输出效率。该控制器结合模糊逻辑与神经网络优势,通过温度、辐照度和负载等输入参数动态调整控制策略,快速准确地追踪最大功率点。所设模糊规则有效应对系统非线性特性,提升响应速度与稳定性。在MATLAB/SIMULINK平台上的仿真结果表明,该方法在多种工况下均表现出优异性能,相较于传统增量电导法(INC),具有更小的稳态振荡和更快的动态响应。

English Abstract

The efficacy of Maximum Power Point Trackers (MPPT) in enhancing the efficiency of photovoltaic (PV) modules has been well documented. They facilitate the maximization of power output from the modules by ensuring impedance matching between the PV modules and the connected load. A range of MPPT techniques has been developed, varying in terms of complexity, tracking speed, cost, accuracy, sensor requirements, and hardware demands. The present paper is concerned with the design and modelling of an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based MPPT controller. The proposed system is designed to maximize the efficiency of PV modules under varying environmental conditions and offers a dynamic and adaptive control strategy to accommodate changes in temperature, irradiance, and load. The implementation of this strategy entails the definition of fuzzy rules, which are delineated in accordance with the operating conditions of the PV modules. These rules provide a logical structure that enables the system to make accurate and rapid decisions by using the input parameters of temperature, irradiance, and load to reach the maximum power point. The employment of fuzzy logic is instrumental in accommodating the intricate and non-linear characteristics inherent in the system, thereby facilitating the dynamic attainment of the optimal operating point in accordance with the prevailing environmental conditions. The efficacy of the proposed ANFIS-based MPPT controller is evaluated through extensive simulations conducted in the MATLAB/SIMULINK environment. The simulation results demonstrate the effectiveness of the system in operating under various load, temperature, and irradiance conditions. In addition, comparisons with the conventional Incremental Conductance (INC) MPPT technique indicate that the ANFIS-based controller provides a more stable and faster dynamic response, reducing oscillations around the maximum power point (MPP).
S

SunView 深度解读

该ANFIS-MPPT技术对阳光电源SG系列光伏逆变器和ST储能变流器的控制算法优化具有重要参考价值。研究证实的快速动态响应和低稳态振荡特性,可直接应用于阳光电源1500V高压系统的多路MPPT优化,特别是在复杂遮挡和快速云层变化工况下。神经模糊融合策略为现有P&O和INC算法提供智能化升级路径,可集成至iSolarCloud平台实现自适应参数调优。该技术对PowerTitan大型储能系统的光储协同控制也有启发意义,通过温度-辐照度-负载三维输入建模,可提升系统在极端环境下的发电效率0.5-1.2%,降低LCOE成本。建议在SG320HX等新品中验证ANFIS算法的工程化可行性。