← 返回
优化可再生能源集成:使用混合FA-PSO的独立微电网先进建模、控制和设计
Optimized Renewable Energy Integration: Advanced Modeling, Control, and Design of a Standalone Microgrid Using Hybrid FA-PSO
| 作者 | Shiva Talebi · Hamed H. Aly |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 微电网 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源 混合微电网 电池储能系统 电池退化 混合优化技术 |
语言:
中文摘要
化石燃料环境影响加剧和资源有限性加速可再生能源增长。本研究应对风光潮汐等可再生能源并入电力系统的挑战,聚焦使用电池储能系统BESS平衡供需的混合可再生微电网设计和优化,同时考虑电池退化问题。电池退化是优化框架中的关键约束。提出结合萤火虫算法和粒子群优化FA-PSO的混合优化技术以提高系统可靠性即负荷缺失概率LPSP和最小化系统净现值成本NPC。结果和统计分析显示所提混合方法优于文献中常用的遗传算法GA、粒子群优化PSO、蚁群优化ACO和萤火虫算法FA。本研究通过将潮汐能整合到可再生能源管理并强调现实电池退化考虑为文献做出贡献。
English Abstract
The increasing environmental impacts and limited nature of fossil fuels have accelerated the growth of renewable energy sources (RESS). This study addresses the challenges associated with combining renewable energy sources, such as wind, solar, and tidal energy, into power systems, and it focuses on the design and optimization of a hybrid renewable microgrid that uses battery energy storage systems (BESS) to balance supply and demand while considering issues related to battery degradation. Battery degradation is a crucial constraint within the optimization framework. A hybrid optimization technique combining the Firefly Algorithm and Particle Swarm Optimization (FA-PSO) is proposed to enhance system reliability, known as loss of load probability (LPSP), and minimize the net present cost (NPC) of the system. The results and statistical analysis reveal that the proposed hybrid method outperforms the common algorithms used in the literature like genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), and firefly algorithm (FA). This work contributes to the literature by integrating tidal energy into renewable management and emphasizing realistic battery degradation considerations.
S
SunView 深度解读
该混合微电网优化技术对阳光电源微电网和光储系统设计有重要参考价值。阳光PowerTitan储能系统在微电网中需要考虑电池退化和容量优化。FA-PSO混合优化算法可应用于阳光iSolarCloud平台的微电网规划工具。LPSP可靠性指标与阳光微电网供电保证率要求一致。潮汐能等多能互补的思路可启发阳光拓展综合能源管理。该研究验证的优化算法性能优势,可支撑阳光开发更智能的微电网容量配置和运行优化功能,提升系统经济性和可靠性。