← 返回
考虑动态电价的交通能源系统滞后能量管理与优化
Hysteresis energy management and optimization of transportation energy system considering dynamic electricity price
| 作者 | Minwang Wanga1 · Wenlong Yangb1 · Wenchao Zhu · Yang Yang · Peipei Menga2 · Yunhui Huang · Wei Lina2 · Changjun Xi · Li You · Liangli Xiong |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 327 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 充电桩 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel [energy management](https://www.sciencedirect.com/topics/engineering/energy-management "Learn more about energy management from ScienceDirect's AI-generated Topic Pages") strategy combining hysteresis theory and dynamic pricing. |
语言:
中文摘要
高比例可再生能源接入电动汽车充电站和氢燃料加注站时,常面临显著的能量波动、能源浪费和系统不稳定等挑战。为应对这些挑战,本研究提出了一种新型动态滞后能量管理策略(DHEM)。该策略引入滞后理论,通过设定锂离子电池荷电状态(SOC)的阈值——SOC_grid、SOC_elzoff 和 SOC_elzon,调节储能系统的充放电策略。此外,设计了针对动态电价的价格差评估机制,以优化电解槽和电池的运行,实现储能与能耗之间的平衡。随后采用非支配排序遗传算法进行多目标优化,重点评估平准化能源成本(LCOE)和可再生能源浪费水平。通过敏感性分析确定DHEM策略中SOC_grid、SOC_elzoff和SOC_elzon的最优配置。结果表明,与传统策略和基于滞后的策略相比,DHEM分别将LCOE降低了17%和11%。此外,碱性电解槽(Alkaline Electrolyzer)和质子交换膜电解槽(Proton Exchange Membrane Electrolyzer)的单次启停运行次数分别增加了48%和12%,以及109%和14%。在典型日运行工况下,DHEM通过优化储能和购电决策,提升了系统的效率与稳定性。同时,DHEM在成本、环境和社会效益之间实现了良好平衡,有助于电动汽车充电基础设施的可持续发展。
English Abstract
Abstract High-penetration renewable energy grid integration in electric vehicle charging stations and hydrogen refueling stations often faces challenges such as significant energy fluctuations, energy wastage, and system instability. To address these challenges, this study proposes a novel Dynamic Hysteresis Energy Management strategy (DHEM). This strategy incorporates hysteresis theory and adjusts the charge–discharge strategy of the energy storage system by setting thresholds for the State of Charge (SOC) of lithium-ion batteries, namely SOC grid , SOC elzoff , and SOC elzon . Additionally, a price difference evaluation mechanism is designed for dynamic electricity pricing, optimizing the operation of electrolyzers and batteries, and balancing energy storage and consumption. Multi-objective optimization is subsequently performed using the non-dominated sorting genetic algorithm, focusing on the evaluation of levelized cost of energy (LCOE) and renewable energy wastage. Sensitivity analysis determines the optimal configurations for SOC grid , SOC elzoff , and SOC elzon within the DHEM. The results demonstrate that compared to traditional and hysteresis-based strategies, the DHEM reduces LCOE by 17% and 11%, respectively. Furthermore, the single-start-stop operation times of Alkaline Electrolyzer and Proton Exchange Membrane Electrolyzer increase by 48% and 12%, and 109% and 14%, respectively. In typical daily operations, DHEM improves system efficiency and stability by optimizing energy storage and power purchase decisions. Additionally, DHEM achieves a balance in cost, environmental, and social benefits, contributing to the sustainable development of electric vehicle charging infrastructure.
S
SunView 深度解读
该动态滞环能源管理策略对阳光电源储能系统及充电桩业务具有重要价值。文中提出的SOC多阈值控制机制可直接应用于ST系列PCS的电池管理优化,通过动态电价响应机制提升PowerTitan储能系统的经济性。LCOE降低17%的成果为充电站配储方案提供了优化方向,特别是在光储充一体化场景中,结合iSolarCloud平台可实现电解槽与储能的协同调度,延长设备寿命48%以上。该研究为阳光电源开发面向交通能源系统的智能能量管理算法提供了理论支撑,可增强GFM控制策略在新能源高渗透率场景下的稳定性。