← 返回
电动汽车驱动 储能系统 可靠性分析 ★ 5.0

分布式电动车麦克纳姆轮瞬态主动短路制动控制

Transient Active Short-Circuit Braking Control on Mecanum Drive Wheels in Distributed Electric Vehicles

作者 Zihui Wang · Peng Xu · Xiaowei Weng · Yuting Zheng
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年6月
技术分类 电动汽车驱动
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式电动汽车 功率开关切换方法 主动短路制动 安全性 稳定性
语言:

中文摘要

高可靠性和容错能力对分布式电动车的安全至关重要。为抑制保护性制动过程中的电流冲击、转矩不平衡及车辆失稳,提出一种改进的电机驱动器功率开关瞬态切换方法。该方法利用定子电流电角度及与电机参数相关的步进延时控制,实现正常运行状态与主动短路(ASC)制动状态间的平滑切换,降低对转子位置检测的依赖。在搭载麦克纳姆轮的轻型电动车上的仿真与实验验证了该方法在提升安全性和稳定性方面的有效性。相比传统直接ASC制动,所提分步方法显著减小了冲击电流和车辆横摆率,为分布式驱动电动车的故障保护技术提供了有效解决方案。

English Abstract

High reliability and fault-tolerant operation are critical for the safety of distributed electric vehicles (EVs). To mitigate surge current, torque imbalance and vehicle instability during protective braking, an enhanced transient switching method for power switches in the motor driver is proposed. By utilizing the electrical angle of the stator current and a step delay control associated with motor parameters, the stepwise active short-circuit method facilitates smooth transitions between normal operation state and the ASC braking state, minimizing reliance on rotor position detections. Simulations and experiments on a light EV with Mecanum wheels demonstrate its effectiveness in improving safety and stability. Comparing the stepwise proposed method with conventional direct ASC braking processes, the impulse current was reduced and the vehicle’s yaw rate decreased significantly. The study contributes to the advancement of fault protection techniques for distributed drive EVs, offering insights into mitigating transient short-circuit currents and torque jerks during protective braking controls.
S

SunView 深度解读

该瞬态主动短路制动控制技术对阳光电源新能源汽车产品线具有重要应用价值。研究提出的基于定子电流电角度的分步切换方法,可直接应用于电机驱动控制器的故障保护设计,通过降低对转子位置传感器的依赖性,提升系统容错能力。该技术的冲击电流抑制策略可借鉴至ST储能变流器的短路保护设计,优化功率开关器件的瞬态应力管理,延长SiC/GaN模块寿命。分步切换控制思想对充电桩产品的紧急断电保护、电网扰动下的平滑切换也有启发意义。建议将该方法集成到电机驱动器的安全控制算法库,并在iSolarCloud平台开发相应的故障诊断与预警功能,提升分布式驱动系统的整体可靠性。