← 返回
电动汽车驱动 储能系统 GaN器件 DAB PFC整流 ★ 5.0

一种实现氮化镓单级车载充电机全范围零电压开关的多目标优化调制策略

A Multi-Objective Optimization Modulation Strategy for Achieving Full-Range ZVS in GaN-Based Single-Stage On-Board Charger

语言:

中文摘要

为提升电动汽车充电系统的功率密度与效率,Boost型集成双有源桥(BI-DAB)变换器备受关注。然而,传统调制策略的零电压开关(ZVS)范围有限且优化灵活性不足,影响效率并制约其应用。本文提出一种软硬件结合的多目标优化调制策略,通过建立完整的ZVS模型并考虑励磁电感的影响,结合励磁电感优化设计与移相调控,实现全范围ZVS运行。该策略还支持无缝模式切换,有效实现功率因数校正与准最优电流应力。实验研制了2 kW/150 kHz的GaN基BI-DAB样机,峰值效率达96.6%,总谐波畸变率为1.5%。

English Abstract

In the pursuit of higher power density and operational efficiency in electric vehicle charging systems, the Boost-type integrated dual active bridge (BI-DAB) converter has garnered significant attention. However, traditional modulation schemes exhibit limited zero-voltage switching (ZVS) ranges and insufficient optimization flexibility, which diminishes efficiency and constrains the practical applications of BI-DAB converters. To address these challenges, this paper proposes a hybrid software-hardware multi-objective optimization modulation scheme designed to extend the ZVS operating range and enhance converter efficiency. A comprehensive ZVS model for the BI-DAB converter is established by which the ZVS conditions are derived. The influence of magnetizing inductance is considered, and a hybrid approach that combines the optimal design of magnetizing inductance and phase-shift optimization enables full-range all-ZVS operation. Additionally, the proposed modulation scheme facilitates seamless mode transitions while effectively achieving power factor correction (PFC) and quasi-optimal current stress conditions. Finally, a GaN-based 2 kW/150 kHz BI-DAB converter prototype was constructed, achieving a peak efficiency of 96.6% and a total harmonic distortion (THD) of 1.5%.
S

SunView 深度解读

该GaN基BI-DAB全范围ZVS调制策略对阳光电源车载充电机产品线具有重要应用价值。通过软硬件协同的多目标优化,实现全工况ZVS运行,峰值效率96.6%、THD仅1.5%,可直接应用于阳光电源OBC产品的功率密度提升与效率优化。其励磁电感优化设计与移相调控相结合的方法,为ST储能变流器的双向DC-DC变换级提供技术参考,有助于提升储能系统充放电效率。该策略的PFC整流与准最优电流应力控制思路,可借鉴至SG光伏逆变器的Boost升压级设计,降低GaN器件应用门槛,推动高频化、轻量化产品开发,契合阳光电源在新能源汽车与储能领域的高功率密度技术路线。