← 返回
储能系统技术 储能系统 DC-DC变换器 多物理场耦合 ★ 5.0

用于电力转X应用的直流三端口串联谐振变换器建模与控制

Modeling and Control for the DC-DC Three-Port Series Resonant Converter in Power-to-X Application

语言:

中文摘要

电力转X技术为可再生能源利用提供了有效途径,需依赖多能交互系统以高效管理多种源荷间的功率流动。多端口谐振直流变换器在集成度、功率密度和效率方面具有优势,但其复杂结构给建模与控制设计带来挑战。本文详述了一种含三个串联谐振绕组的三端口直流变换器的综合建模方法,采用谐波近似、扩展描述函数法及状态变量降阶策略,有效简化了非线性强耦合高阶模型。所提方法适用于多种电力转X场景下的n端口谐振变换器。基于所得大信号与小信号模型,本文进一步提出多端口谐振变换器的通用调制与控制原则,并引入基于内移相调制的电压控制策略,实现宽范围电压调节与功率解耦。仿真与实验结果验证了所提模型与控制策略的有效性。

English Abstract

Power-to-X technology provides an effective approach for renewable energy utilization, which prefers multienergy interaction systems to efficiently manage power flows among various sources and loads. As a solution, multiport resonant dc-dc converters show their advantages in terms of integration, power volume, and efficiency. However, their complex structure poses strict challenges in modeling analysis and control design works. This article explains the comprehensive modeling procedure of a three-port dc-dc converter with three series resonant windings, where the strategies of harmonic approximation, extended describing function method, and state variable reduction are used to properly simplify the original nonlinear high-order equations. In fact, the proposed modeling method is highly versatile and applicable to n-port resonant converters for a variety of power-to-X applications. After acquiring the large- and small-signal models, this article further develops general modulation and control principles for multiport resonant converters. A voltage control strategy based on inner phase shift ratio modulation is introduced, demonstrating a wide voltage regulation range and power decoupling performance. The effectiveness of the proposed models and control strategy is verified through simulation and experimental results.
S

SunView 深度解读

该三端口串联谐振变换器建模与控制技术对阳光电源多能交互系统具有重要应用价值。在PowerTitan储能系统中,可实现光伏、储能、负载三端口高效功率管理,提升系统集成度与功率密度。所提内移相调制策略可应用于ST系列储能变流器的宽范围电压调节,解决多端口功率耦合难题。扩展描述函数建模方法为阳光电源开发新型多端口DC-DC变换器提供理论基础,特别适用于电制氢、电制氨等Power-to-X场景。该技术与阳光电源SiC器件应用、三电平拓扑相结合,可进一步提升车载OBC多端口充电效率,推动构网型储能系统的多物理场协同控制优化。