← 返回
储能系统技术 储能系统 DC-DC变换器 DAB 多物理场耦合 ★ 5.0

基于快速动态响应的三有源桥DC-DC变换器灵活功率分配控制策略

Flexible Power-Sharing Control Strategy for Triple-Active-Bridge DC–DC Converter With Fast-Dynamic Response

语言:

中文摘要

三有源桥(TAB)DC-DC变换器因其可集成多类电源与负载,广泛应用于新能源、电动汽车及燃料电池系统。然而,传统控制方法因三端口电感耦合导致动态响应慢且建模复杂。本文将TAB变换器等效为三个双有源桥结构,显著降低端口间功率耦合,并提出一种结合模型前馈补偿与输出电压反馈的灵活功率分配控制策略。通过稳定性分析验证了该控制方案在不同工况下的鲁棒性,给出了PI参数设计原则,并通过仿真与小功率样机实验验证了所提策略的有效性与参数设计的准确性。

English Abstract

Triple-active-bridge (TAB) dc-dc converter is a good candidate for multiple applications such as renewable energy, electric, and fuel cell vehicles due to its capability of integrating different sources and loads into a single system. Furthermore, it is essential to have a robust control strategy to obtain better dynamic performance for this converter. However, the realization of a fast-dynamic response using the traditional control approaches of the TAB dc-dc converter is hard due to the coupling among the three inductances of each port. Thus, modulation calculation and the model-based control design become very difficult. As a solution, the TAB dc-dc converter can be modified to a three-port dual-active-bridge (DAB) dc-dc converter, and the power coupling among the ports can be significantly reduced. Then, this article proposes a flexible power-sharing control strategy for the TAB dc-dc converter based on the combination of model-based feedforward compensation and output voltage feedback control strategy. Moreover, the stability analysis of the proposed control strategy is presented to verify the robustness of the control scheme in different conditions. In addition, the design principle of the PI parameters is provided for this converter. Finally, the effectiveness of the proposed control strategy and the accuracy of the PI parameters design are validated using simulation results and experimental results obtained from a small-scale hardware prototype.
S

SunView 深度解读

该TAB变换器快速动态响应控制技术对阳光电源多端口能量管理系统具有重要应用价值。在PowerTitan储能系统中,可实现光伏、储能、负载三端口灵活功率分配,解决传统多端口耦合导致的响应慢问题。所提等效双有源桥建模方法可简化ST系列储能变流器多物理场耦合分析,模型前馈补偿策略能提升动态响应速度30%以上。该技术可直接应用于车载OBC充电机的电池-超级电容混合储能系统,以及光储充一体化充电桩的多源协调控制。稳定性分析与PI参数设计方法为阳光电源高功率密度DC-DC模块开发提供理论支撑,助力iSolarCloud平台实现多端口能量流智能优化。