← 返回
平面型与沟槽型SiC MOSFET偏置温度不稳定性恢复特性的综合研究
Comprehensive Investigations on Recovery Characteristics of Bias Temperature Instability in Planar and Trench SiC MOSFETs
| 作者 | Kaiwei Li · Pengju Sun · Xinghao Zhou · Lan Chen · Qingsong Liu |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年10月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 可靠性分析 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 碳化硅MOSFET 偏置温度不稳定性 恢复特性 短路应力 阈值电压漂移 |
语言:
中文摘要
栅氧退化引起的偏置温度不稳定性(BTI)是碳化硅(SiC)金属-氧化物-半导体场效应晶体管(MOSFET)最关键的可靠性问题之一。现有BTI恢复研究尚不够全面。本文系统研究了平面型与沟槽型SiC MOSFET中直流与交流BTI的恢复特性。结果表明,无论器件栅结构如何,短路应力均可实现BTI的有效恢复,且短路能量越大,恢复能力越强。但过强的短路应力更易在平面栅器件中引发额外阈值电压漂移。进一步比较短路应力与负栅压加高温两种恢复方式后的阈值电压再漂移,发现短路应力具有更优的恢复效果。该结果对抑制阈值电压漂移具有重要应用指导意义。
English Abstract
Gate-oxide degradation caused by bias temperature instability (BTI) is one of the most critical reliability issues for silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs). Nevertheless, the existing research on BTI recovery remains insufficiently comprehensive. In this study, the recovery characteristics of dc BTI and ac BTI in planar and trench SiC MOSFETs are comprehensively explored. It is found that both dc BTI and ac BTI can be recovered by short-circuit (SC) stress irrespective of the gate structure of the device. Notably, the larger the SC energy, the stronger the recovery ability. Excessive SC stress is more likely to induce additional threshold voltage drift in planar-gate devices. Furthermore, the threshold voltage redrift after recovery with the two methods of SC stress and the negative gate voltage plus high temperature are compared, revealing that SC stress yields a superior recovery outcome. From the perspective of device applications, these findings are believed to be helpful to suppress threshold voltage drift.
S
SunView 深度解读
该研究揭示的SiC MOSFET偏置温度不稳定性恢复机制对阳光电源功率器件应用具有重要价值。研究发现短路应力可有效恢复BTI引起的阈值电压漂移,且恢复效果优于负栅压加高温方式,这为ST系列储能变流器和SG系列光伏逆变器中SiC器件的可靠性设计提供了新思路。针对平面栅器件在强短路应力下易产生额外漂移的特性,可优化PowerTitan大型储能系统的短路保护策略和栅极驱动参数。该成果可应用于智能运维系统,通过iSolarCloud平台监测器件阈值电压漂移,结合受控短路应力实现预测性维护,延长SiC功率模块寿命,提升储能和光伏系统的长期可靠性。