← 返回
一种促进稀疏性的自适应调节方法用于并网太阳能光伏系统的数据驱动建模与控制
Adaptive Regulated Sparsity Promoting Approach for Data-Driven Modeling and Control of Grid-Connected Solar Photovoltaic Generation
| 作者 | Zhongtian Zhang · Javad Khazaei · Rick S. Blum |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年9月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 太阳能光伏系统 自适应调节稀疏回归 数据驱动建模与控制 故障分析 实时仿真 |
语言:
中文摘要
本文提出一种基于稀疏性促进的新型统计学习方法,用于太阳能光伏(PV)系统的数据驱动建模与控制。针对传统稀疏回归在候选函数增多时计算复杂度高的问题,设计了自适应调节稀疏回归(ARSR)算法。该方法为各状态变量自适应调节候选函数的超参数权重,提升模型精度,并有效剔除动态模型中的无关项。基于实测数据,建立了单级和两级PV系统的开环与闭环模型,并用于控制器设计。此外,该方法还可用于故障分析,展现出优于其他数据驱动技术的能力。实时仿真验证了所提方法的有效性。
English Abstract
This paper introduces a new statistical learning technique based on sparsity promotion for data-driven modeling and control of solar photovoltaic (PV) systems. Compared with conventional sparse regression techniques that might introduce computational complexities when the number of candidate functions increases, an innovative algorithm, named adaptive regulated sparse regression (ARSR) is proposed. The ARSR adaptively regulates the hyperparameter weights of candidate functions to best represent the dynamics of PV systems. This method allows for the application of different sparsity-promoting hyperparameters for each state variable, whereas the conventional approach uses the same hyperparameter for all state variables, which may result in not excluding all the unrelated terms from the dynamics. Consequently, the proposed method can identify more complex dynamics with greater accuracy. Utilizing this algorithm, open-loop and closed-loop models of single-stage and two-stage PV systems are obtained from measurements and are utilized for control design purposes. Moreover, it is demonstrated that the proposed data-driven approach can be successfully employed for fault analysis studies, which distinguishes its capabilities from other data-driven techniques. Finally, the proposed approach is validated through real-time simulations.
S
SunView 深度解读
该自适应稀疏回归建模技术对阳光电源SG系列光伏逆变器和ST储能变流器的控制优化具有重要价值。其数据驱动建模方法可直接应用于iSolarCloud平台的智能诊断模块,通过实测运行数据快速建立系统动态模型,无需复杂物理建模。稀疏性促进算法能有效识别关键控制变量,优化MPPT算法和并网控制策略,提升GFL跟网控制性能。该方法的故障分析能力可增强预测性维护功能,实时识别逆变器异常工况。对于PowerTitan大型储能系统,该技术可实现多变流器协调控制的自适应优化,降低调试复杂度,提升系统稳定性和发电效率。