← 返回
氢能与燃料电池 储能系统 模型预测控制MPC ★ 4.0

基于量子退火的多堆燃料电池混合动力系统三阶段调度策略

A Quantum Annealing-Based Three-Stage Scheduling Strategy for Multi-Stack Fuel Cell Hybrid Power Systems

作者 Wenzhuo Shi · Junyu Chen · Xianzhuo Sun · Zhengyang Hu · Yuhong Zhao · Yibo Ding
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年5月
技术分类 氢能与燃料电池
技术标签 储能系统 模型预测控制MPC
相关度评分 ★★★★ 4.0 / 5.0
关键词 燃料电池混合动力系统 量子退火 多堆栈固体氧化物燃料电池 调度策略 优化计算
语言:

中文摘要

针对多堆配置下燃料电池混合动力系统优化问题非凸、二进制变量多导致求解困难的问题,本文提出一种基于量子退火的三阶段调度策略。该方法在日前、日内和实时阶段分层解耦决策过程,结合各时段预测信息优化启停计划与功率分配。利用量子退火高效求解大规模二进制优化问题,并通过OPAL-RT实验平台验证。相比传统方法,所提方法计算速度显著提升,较DMPC方法快49.89倍,较Gurobi方法快22.25倍,且总运行成本分别降低14.66%和10.62%。

English Abstract

Fuel cell hybrid power systems (FCHPS) face significant challenges due to the non-convex nature of their optimization problems, especially in high-power applications with multi-stack configurations that involve numerous start-stop decisions, introducing a high number of binary variables. To address these issues, this paper presents a quantum annealing (QA)-based three-stage scheduling strategy for multi-stack solid oxide fuel cell (SOFC)-based fuel cell hybrid power systems (FCHPS). The proposed method decouples the decision-making process across different timescales—day-ahead, intra-day, and real-time—tailoring decisions to the dynamics of various power sources within the FCHPS. In the day-ahead stage, global predictions inform the startup and shutdown of SOFCs; in the intra-day stage, short-term predictions refine power outputs; and in the real-time stage, adjustments are made to respond to immediate operational conditions. Quantum annealing is introduced to expedite the solution of the large-scale, binary optimization problems inherent in multi-stack configurations. A OPAL-RT-based experimental platform is used to validate the proposed strategy. In addition, a comparison between the proposed method and conventional methods is conducted, indicating that the proposed QA-based approach significantly speeds up the computation process—being 49.89 times faster than the dual model (DMPC) predictive control method and 22.25 times faster than the Gurobi-based method. It also optimizes the overall operational cost, achieving a reduction in the total objective function value by approximately 10.62% compared to the Gurobi-based method, and by 14.66% compared to the DMPC method.
S

SunView 深度解读

该量子退火优化算法对阳光电源氢储能系统和混合储能产品具有重要应用价值。三阶段调度策略可直接应用于PowerTitan储能系统的多堆燃料电池配置,解决大规模二进制优化难题。相比传统MPC方法,计算速度提升49倍且成本降低14.66%,可显著改善ST系列储能变流器在氢储能场景下的启停优化与功率分配效率。该方法的日前-日内-实时分层决策框架,与iSolarCloud云平台的预测性维护功能高度契合,可增强光储氢一体化系统的经济性。量子退火算法为阳光电源多能源协同控制提供了新的高效求解思路,特别适用于大型氢储能电站的实时调度优化。