← 返回
风电变流技术 储能系统 模型预测控制MPC ★ 5.0

通过数据驱动的模型预测独立变桨控制提升大型风力机运行稳定性

Improving Operational Stability of Large-Scale Wind Turbines Through Data-Driven Model Predictive Individual Pitch Control

作者 Songyue Zheng · Lijian Wu · Lizhong Wang · Lilin Wang · Yi Hong
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年3月
技术分类 风电变流技术
技术标签 储能系统 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 大型风力发电机组 数据驱动模型预测控制 独立变桨控制 运行稳定性 结构载荷
语言:

中文摘要

针对结构柔性显著的现代大型风力机在非对称与随机气动载荷下运行稳定性差的问题,本文提出一种基于数据驱动模型预测控制的独立变桨控制方法(DMPC-IPC)。该方法通过优化转速/功率波动抑制、非对称载荷衰减及结构阻尼调节等多目标性能指标提升系统稳定性。采用任意多项式混沌展开构建代理模型,并结合高斯过程回归量化模型不确定性,以预测变桨对非线性动态响应的影响;设计一阶阴阳对优化求解器高效求解多步预测代价函数。基于DTU-10MW风力机在极端阵风与湍流风况下的全工况仿真验证表明,该方法显著提升了运行稳定性并有效降低了结构载荷。

English Abstract

Modern large-scale wind turbines (WTs) with pronounced structural flexibility are subjected to asymmetric and stochastic aerodynamic loads, posing challenges to their stable operation. Accordingly, this study proposes a data-driven model predictive controller-based individual pitch control (DMPC-IPC) for large-scale WTs. DMPC-IPC enhances operational stability through the comprehensive optimization of control objectives, which encompass the reduction of speed/power fluctuations, attenuation of asymmetric loads, and regulation of structural damping. To formulate the cost function for the optimization problem, a data-driven model is developed to predict the impact of pitch control on the nonlinear dynamic responses of WTs arising from structural flexibility. In the data-driven model, the surrogate model is established using arbitrary polynomial chaos expansion, while Gaussian Process regression quantifies the residual uncertainty associated with surrogate model mismatches. A novel First-order Yin-Yang Pair Optimization solver is exploited to compute the cost function across various prediction horizons efficiently. Ultimately, performance validations of the DMPC-IPC are conducted using the DTU-10MW WT under extreme operation gusty and normal turbulent wind conditions across the entire operational region. Results demonstrate promising improvements in speed/power stability and mitigations in structural loads, thereby paving the way for its implementation in large-scale WTs.
S

SunView 深度解读

该数据驱动的模型预测控制技术对阳光电源储能和风电产品线具有重要参考价值。其中的多目标优化和不确定性预测方法可应用于ST系列储能变流器的功率调节和PowerTitan系统的稳定性控制。特别是文中提出的高斯过程回归预测方法,可优化储能系统的SOC预测和调度策略;多步预测代价函数的优化思路也可用于改进储能PCS的电网支撑控制性能。建议在ST2752XP等大功率储能变流器中验证该预测控制方法,提升系统在复杂工况下的运行稳定性。