← 返回
光伏发电技术 储能系统 可靠性分析 ★ 5.0

基于样本图的多元短期光伏功率预测

Sample-Wise Graph-Based Multivariate Short-Term PV Power Forecasting

作者 Xuguang Wang · Wangjie Liu · Junhong Ni · Mi Zhang
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年6月
技术分类 光伏发电技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 短期光伏功率预测 数据对齐 回归精度失衡 样本图 样本加权策略
语言:

中文摘要

可靠的短期光伏(PV)功率预测对电力系统电源的合理调度与运行成本的有效控制具有重要意义。然而,光伏功率数据的时间错位及回归精度不平衡问题严重影响预测可靠性。本文从预测模型样本的角度研究多元光伏功率预测。首先,通过时延向量参数化样本的错位程度;进而定义样本图以关联时延向量与光伏功率数据;随后通过最小化样本图的平滑性度量估计时延向量;最后提出基于样本图的样本加权策略,缓解回归精度不平衡问题。在真实数据集上的实验验证了所提方法的有效性,对比实验表明该方案显著提升了短期光伏功率预测性能。

English Abstract

Reliable short-term photovoltaic (PV) power forecasting is of crucial significance for the rational dispatching of power sources and the effective control of operating costs for the power grid. However, temporal misalignment and regression accuracy imbalance of PV power data pose significant challenges to the reliability of forecast results. In this study, multivariate PV power forecasting is investigated from the perspective of forecast model samples. Firstly, the extent of misalignment of a sample is parameterized by a time-delay vector. Subsequently, the sample-wise graph is defined to relate the time-delay vector with PV power data. Then, the time-delay vector is estimated by minimizing the smoothness metric of the sample-wise graph. Finally, a sample-wise graph-based sample weighting strategy is introduced to address the issue of regression accuracy imbalance. The efficiency of the proposed PV power forecasting scheme is validated through extensive experiments on real-world datasets. Comparison experiments suggest that the proposed scheme can achieve remarkably improved short-term PV power forecasting.
S

SunView 深度解读

该样本图多元预测技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。通过时延向量参数化解决光伏功率数据时间错位问题,可显著提升SG系列逆变器集群的短期功率预测精度,优化MPPT算法的前瞻性控制。样本加权策略能改善回归精度不平衡,特别适用于ST储能变流器的充放电调度决策,提高储能系统在电网调峰调频场景下的响应准确性。该方法可集成至iSolarCloud预测性维护模块,结合构网型GFM控制策略,实现光储一体化系统的精准功率预测与合理调度,有效降低电力系统运行成本,提升新能源电站整体可靠性。