← 返回
光伏发电技术 储能系统 ★ 5.0

基于解耦表示学习的配电网分布鲁棒联合机会约束电压控制

Disentangled Representation Learning Based Distributionally Robust Joint Chance Constrained Voltage Control for Distribution Networks

作者 Yufeng Wu · Dong Liu · Jinyu Chai · Tianyuan Liu · Wang Liao
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年7月
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式网络 电压控制 光伏功率 分布鲁棒联合机会约束 解纠缠表示学习
语言:

中文摘要

本文提出一种数据驱动的分层框架,用于配电网中分布鲁棒的联合机会约束电压控制。采用解耦表示学习技术对给定预测下各节点光伏出力的概率分布进行建模,有效捕捉历史数据中预测误差与预测值之间以及不同节点间光伏出力的关联性。通过解耦条件解码器构建KL度量模糊集,并在此基础上引入分布鲁棒联合机会约束。为实现约束的可计算转化,提出基于KL散度的重构求解方法,并设计支持约束的加速选取技术以降低计算耗时,同时保证控制性能。所提方法在不同规模配电网中得到验证。

English Abstract

This paper proposes a data-driven hierarchical framework for distributionally robust joint chance constrained voltage control in distribution networks (DNs). Disentangled representation learning technology is employed to model the distribution of photovoltaic (PV) power at different buses under given predictions. Benefiting from the disentangled model, the correlations implied in the historical dataset are effectively captured. These include correlations between predicted errors and given predicted values, as well as the correlations between PV power at different buses. The KL-metric ambiguity set for PV power distribution is constructed with the reference distribution introduced by a disentangled conditional decoder. Based on the KL-metric ambiguity set, distributionally robust joint chance constraints are adopted. To transform the distributionally robust joint chance constraint into a tractable form, a reconstruction solution method with KL divergence is presented, and a corresponding acceleration technique for selecting support constraints is developed to reduce computation time while ensuring control effectiveness. The proposed method is validated using distribution networks of different scales.
S

SunView 深度解读

该分布鲁棒电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器的协同控制具有重要应用价值。解耦表示学习方法可有效建模多节点光伏出力的预测误差关联性,为PowerTitan大型储能系统的功率调度提供更精准的不确定性量化。联合机会约束优化框架可直接集成到iSolarCloud云平台的智能调度模块,实现配电网电压越限风险的主动管控。基于KL散度的分布鲁棒优化方法能增强储能-光伏协同控制策略对预测偏差的鲁棒性,降低电压调节裕度需求,提升储能系统利用率。该技术为阳光电源开发新一代分布式能源管理系统(DERMS)提供理论支撑,特别适用于高比例光伏接入的工商业微网场景。