← 返回
风电变流技术 深度学习 ★ 5.0

基于Wasserstein距离的风电场异常风功率数据迭代清洗方法

An Iterative Cleaning Method for Abnormal Wind Power Data in Wind Farms Based on Wasserstein Distance

作者 Yijun Shen · Bo Chen · Jianzheng Wang · Shichao Liu · Li Yu
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年3月
技术分类 风电变流技术
技术标签 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风力发电机 功率曲线 异常数据 迭代清理方法 神经网络
语言:

中文摘要

风电机组功率曲线是评估其发电性能的重要指标,对风电场运行和电力系统调度具有重要意义。然而,机组停机、传感器故障和限电等因素导致大量异常值,给状态监测与功率预测带来挑战。针对异常数据特点,本文提出一种基于Wasserstein距离的风电场迭代清洗方法,结合神经网络与单调性约束,利用Wasserstein距离建模风速-功率关系并同步剔除异常点,使拟合曲线逐步逼近真实功率曲线。在数值模拟和十二个实测风电机组数据集上的实验表明,该方法在存在大量异常数据的情况下仍能构建高精度功率曲线模型,性能显著优于现有基准方法。

English Abstract

A wind turbine's power curve is an important indicator for evaluating the power generation performance of wind turbines, which is of great significance for the operation of wind farms and the scheduling of power systems. However, the shutdown of wind turbines, sensor failures, and power curtailment can cause a large number of outliers, which poses great challenges to wind turbine status monitoring and power prediction. Aiming at the characteristics of abnormal wind turbine data, this paper proposes an iterative cleaning method for wind farms based on wasserstein distance. Via this proposed method, the speed and power are modeled while gradually removing outliers. A neural network combined with wasserstein distance and monotonic constraints is leveraged to create a curve model and to synchronously clean up abnormal data. The curve fitted by the neural network converges to the true wind turbine power curve, which ultimately enables curve modeling while removing outliers. Finally, various experiments are conducted on numerical simulation datasets and twelve real wind turbine datasets. Qualitative and quantitative results demonstrate that the algorithm proposed can establish an accurate power curve model in the presence of a large amount of abnormal data, and significantly outperforms other baselines based on some discussed criteria.
S

SunView 深度解读

该风电数据清洗方法对阳光电源的风电变流器和智能运维系统具有重要应用价值。基于Wasserstein距离的异常数据识别技术可集成到iSolarCloud平台,提升风电场运行数据的质量和可靠性。具体可应用于:(1)风电变流器的功率曲线优化与效率提升;(2)iSolarCloud平台的智能诊断与预测性维护功能;(3)风储联合运行策略优化。该方法可与ST系列储能变流器协同,实现风储协调控制精度提升。这对提高阳光电源风电产品的竞争力、完善智能运维体系具有积极意义。建议将其纳入下一代风电产品的技术路线图。