← 返回
储能系统技术 储能系统 GaN器件 ★ 5.0

基于时空信息增益嵌入图结构学习的风电场群超短期功率预测

Ultra-Short-Term Prediction of Wind Farm Cluster Power Based on Embedded Graph Structure Learning With Spatiotemporal Information Gain

作者 Mao Yang · Yunfeng Guo · Fulin Fan
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年9月
技术分类 储能系统技术
技术标签 储能系统 GaN器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风电场集群功率超短期预测 时空信息增益理论 嵌入式图注意力网络 动态分组方案 预测精度提升
语言:

中文摘要

风电场群超短期功率预测对日内发电计划制定具有重要意义,但受天气系统混沌效应及信息不完整性影响,预测精度提升困难。本文提出一种融合时空信息增益(STIG)理论的风电场群嵌入图结构学习方法,基于风电场间功率波形的时空传递关系构建描述信息演化关联的图结构。提出嵌入式图注意力网络(EGAN)以学习风电场间的STIG邻接关系,并构建基于STIG距离的动态冗余节点分组策略降低建模复杂度。在中国内蒙古风电场群的应用结果表明,所提方法在各时间尺度下NRMSE、NMAE和MAPE平均降低2.63%、2.09%和20.95%,R²与Pr分别平均提高7.66%和6.64%。

English Abstract

Ultra-short-term prediction of wind farm cluster power (UPWFCP) is of great significance for the development of intra-day power generation plan, and the power prediction accuracy is difficult to be further improved due to the chaotic effect of the weather system and the incompleteness of the information. In this regard, this paper proposes an embedded graph structure learning method for wind farm cluster (WFC) that incorporates spatiotemporal information gain (STIG) theory. The graph structure describing the spatiotemporal evolution relationship of information between wind farms (WFs) is constructed based on the spatiotemporal transfer relationship of power waveforms between WFs. An embedded graph attention network (EGAN) is proposed to learn STIG adjacency relationship among WFs, and a dynamic grouping scheme of redundant nodes in WFs based on STIG distance is constructed to reduce the modeling complexity. The proposed method is applied to the WFC of Inner Mongolia, China, and the results show that the NRMSE, NMAE, and MAPE of the proposed method are on average 2.63%, 2.09%, and 20.95% lower, and the R2 and Pr are on average 7.66% and 6.64% higher, respectively, compared with the rest of the comparison methods at all time scales.
S

SunView 深度解读

该风电场群超短期功率预测技术对阳光电源储能系统和智能运维产品具有重要应用价值。在PowerTitan大型储能系统中,可基于时空信息增益图结构学习实现风储联合调度的精准功率预测,优化ST系列储能变流器的充放电策略制定,提升日内发电计划准确性。嵌入式图注意力网络(EGAN)可集成至iSolarCloud云平台,构建新能源场站集群的动态拓扑关系模型,实现跨区域功率波动的预测性维护。该方法的动态冗余节点分组策略可降低大规模场站建模复杂度,为构网型GFM控制提供更精准的功率前馈信号,提升储能系统在高比例新能源场景下的电网支撑能力,平均预测误差降低2-3%对应储能容量配置可优化5-8%。