← 返回
储能系统技术 储能系统 可靠性分析 ★ 4.0

无需训练的学习在GIS X-DR图像分析中的应用

Training-Free Learning Applied in GIS X-DR Image Analysis

作者 Lyulin Kuang · Yemin Shi · Haochong Wang · Yong Zhu · Wei Wang · Wenkai Chen
期刊 IEEE Transactions on Power Delivery
出版日期 2025年3月
技术分类 储能系统技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★ 4.0 / 5.0
关键词 气体绝缘开关设备 X射线数字成像 人工智能模型 组件分割 自动分析
语言:

中文摘要

气体绝缘开关设备(GIS)在电力系统中具有关键作用,其安全运行直接影响电网的稳定性。X射线数字成像(X-DR)技术已被广泛用于检测GIS内部缺陷,但现有分析多依赖人工,耗时且费力。本文提出一种基于无需训练方法的AI分析流程,结合基础模型SAM与SegGPT,实现GIS X-DR图像的组件分割。我们构建了一个包含近100幅图像、涵盖三类组件的小规模标注数据集,并开展实验验证。结果表明,该方法在组件分割任务中具有高精度,可直接用于小部件计数、图像质量检测等任务,亦可用于标注数据以支持后续AI模型开发,推动GIS X-DR自动化分析的发展。

English Abstract

Gas Insulated Switchgear (GIS) plays a crucial role in the electrical grid, particularly in transmission, distribution, and substation applications, and the safe operation of GIS is related to the secure functioning of the power grid. Recent years, X-ray digital radiography (X-DR) as a powerful non-destructive tool has been widely used for inspecting internal defects of GIS. However, the majority of collected GIS X-DR images still require specialized manual analysis, which is time-consuming and labour-intensive. In this paper, we present a novel application of advanced artificial intelligence (AI) models in GIS X-DR analysis. Specifically, we propose a pipeline of components segmentation based on a training-free method, utilizing the foundation models Segment Anything Model (SAM) and SegGPT. Meanwhile we annotate and build a small dataset with nearly 100 GIS X-DR images and three categories covering small-size, larger-size, and grain-type components. Then we carefully conduct several experiments with the dataset. The results demonstrate that the application of this training-free pipeline achieves a high precision of component segmentation in GIS X-DR images. Our method could be directly used for GIS X-DR analysis, like small components counting and image quality test. Also, this pipeline could be used to label the GIS X-DR or other images for next step AI methods application. So, we could develop more and better AI models in GIS XD-R analysis. This advancement in automated GIS X-DR analysis not only contributes to the reliability and efficiency of power distribution systems but also opens avenues for automated inspection and maintenance processes in the energy sector.
S

SunView 深度解读

该无需训练的AI图像分析技术对阳光电源储能与光伏产品的质量检测与运维具有重要价值。在PowerTitan大型储能系统和ST系列储能变流器生产环节,可应用X-DR成像结合SAM/SegGPT模型实现GIS开关设备的自动化缺陷检测,替代传统人工分析,提升检测效率和准确性。该方法的小样本学习特性契合阳光电源多样化产品线需求,可快速部署至SG光伏逆变器、充电桩等设备的关键部件检测。技术可集成至iSolarCloud智能运维平台,实现预测性维护,降低GIS设备故障风险,保障电网侧储能系统的高可靠运行,支撑阳光电源在大型储能项目中的质量管控能力。