← 返回
光伏发电技术 储能系统 ★ 5.0

输入参数不确定性对涡流法过剩载流子复合寿命测量灵敏度分析

Sensitivity Analysis of Eddy Current Excess Carrier Recombination Lifetime Measurements Due to Input Parameter Uncertainty

作者 Adrienne L. Blum · Harrison W. Wilterdink · Ronald A. Sinton
期刊 IEEE Journal of Photovoltaics
出版日期 2025年2月
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 硅光伏样品 过剩载流子复合寿命 关键指标 不确定性 输入参数
语言:

中文摘要

多年来,利用涡流光电导传感器测量过剩载流子复合寿命在硅光伏样品金属化前的质量表征中至关重要。该方法可提取注入依赖的复合寿命、发射极饱和电流密度、体寿命及隐含电流-电压曲线等关键参数,广泛应用于光伏研发与生产中的工艺控制与优化。随着高效电池结构对参数精度要求的提高,量化其不确定度来源尤为关键。本文重点研究上述参数对样品相关输入量(如厚度和电阻率)不确定性的敏感性。结果表明,当输入参数精度优于晶圆规格书所列指标时,可实现高置信度测量,发射极饱和电流密度不确定度低于1 fA/cm²,隐含开路电压不确定度小于1 mV。

English Abstract

For decades, excess carrier recombination lifetime measurements using an eddy current photoconductance sensor have been essential in characterizing the quality of silicon photovoltaic samples prior to metallization. Key metrics reported from the analysis of these measurements include injection-dependent excess carrier recombination lifetime, emitter saturation current density, bulk lifetime, and the implied current–voltage curve. These metrics are crucial for process control, optimization, and technological advancements in photovoltaic research and development, as well as production. As modern high-efficiency cell designs increasingly rely on precise determination of these metrics, it is important to quantify their uncertainty due to all factors; this study specifically examines their sensitivity to uncertainties in the sample-specific input parameters required for their reporting. Overall, results with a high level of confidence, including less than 1-fA/cm2 uncertainty in emitter saturation current density and less than 1-mV uncertainty in implied V_oc , can be achieved with knowledge of the input thickness and substrate resistivity beyond what is specified on a wafer specification sheet.
S

SunView 深度解读

该涡流法载流子寿命测量技术对阳光电源光伏产业链质量控制具有重要价值。在SG系列逆变器的组件选型中,通过精确测量硅片发射极饱和电流密度(<1 fA/cm²精度)和隐含开路电压(<1 mV不确定度),可在金属化前筛选高效电池片,确保MPPT算法获得最优输入特性。该方法可应用于阳光电源组件供应商审核体系,通过量化注入依赖复合寿命参数,识别TOPCon、HJT等高效电池的工艺偏差,优化ST储能系统的电池配组一致性。技术启发:可将该灵敏度分析方法迁移至功率器件SiC晶圆的少子寿命检测,提升模块可靠性预测能力。