← 返回
用于估计预期拥塞与安全性的多项式线路断开分布因子
Polynomial Line Outage Distribution Factors for Estimating Expected Congestion and Security
| 作者 | Jochen Lorenz Cremer |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 电力系统安全 线路开断分布因子 多项式近似 概率安全 极端天气事件 |
语言:
中文摘要
极端天气事件和多重线路故障对电力系统安全构成严峻挑战,易引发突发性线路拥塞。传统方法采用线路断开分布因子(LODFs)计算故障后潮流,但随着故障数量k增加,矩阵求逆的计算复杂度急剧上升,难以适用于大规模系统。本文提出一种基于泰勒级数展开的LODF多项式近似方法,通过高效组合单线路故障对应的矩阵运算,显著提升计算速度。进一步,该方法用于计算期望线路潮流,将N-k故障分解为重复基函数,降低概率安全性评估的计算负担。在118、300、1354和2328节点系统中的案例研究表明,该方法在评估预期拥塞与系统安全方面兼具高精度与高效性,为应对日益频发的极端天气事件下电力系统可靠性管理提供了新路径。
English Abstract
Extreme weather events and simultaneous k faults pose significant challenges to the security of the power system, leading to sudden line congestion. Conventionally, Line Outage Distribution Factors (LODFs) are used to compute post-fault line flows. However, as k increases, the complexity and number of required matrix inversions make these computations impractical for large systems. This paper introduces a polynomial approximation for LODFs, a method that efficiently combines and multiplies the matrices corresponding to single-line faults using Taylor series expansion. This method is faster than performing matrix inversions for each fault scenario. Moreover, we apply polynomial LODFs to compute expected line flows and enhance probabilistic security, reducing computational demands by decomposing N- k faults into repeating basis functions. Case studies on 118-, 300-, 1354- and 2328-bus systems demonstrate the accuracy and computational superiority of polynomial LODFs in assessing expected congestion and security. These findings are a first step towards managing the reliability and efficiency of power systems in the face of increasing extreme weather events.
S
SunView 深度解读
该多项式LODF快速计算方法对阳光电源PowerTitan大型储能系统和iSolarCloud智能运维平台具有重要应用价值。在极端天气下,该算法可高效评估N-k线路故障场景的潮流拥塞风险,为ST系列储能变流器的功率调度策略提供实时决策支持。通过泰勒级数近似替代传统矩阵求逆,可将概率安全评估嵌入云平台的预测性维护模块,实现大规模新能源场站的快速风险预警。该方法特别适用于构网型GFM储能系统在弱电网场景下的安全裕度计算,可优化储能系统在多重故障工况下的主动支撑能力,提升电网侧储能项目的可靠性管理水平和应急响应速度。