← 返回
储能系统技术 储能系统 ★ 5.0

考虑注入不确定性下交流电力网络的鲁棒拓扑控制

Robust Topology Control of AC Power Networks With Injection Uncertainties

作者
期刊 IEEE Transactions on Power Systems
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源整合 鲁棒交流最优输电开关 不确定性 网络拓扑 广义Benders分解
语言:

中文摘要

摘要:可再生能源(RES)的整合促使电网需要提高灵活性。虽然最优输电开关(OTS)能够利用这种灵活性,但确定性 OTS 无法为负荷和可再生能源注入的不确定性提供最优拓扑结构。本文提出了一种新颖的两级三阶段鲁棒交流 OTS(ACOTS)公式,用于解决电网日前运行中的注入不确定性问题。与以往的公式不同,所提出的模型对潮流方程没有进行近似处理。主问题是一个混合整数线性规划(MILP)公式,用于确定鲁棒最优网络拓扑,并作为子问题的输入。子问题按顺序求解,其中第一个子问题是确定性交流最优潮流(ACOPF)问题,第二个子问题揭示最坏情况下的不确定性,从而在考虑的不确定性范围内协同优化调度。所提出的公式采用广义 Benders 分解法求解,并设计了加速收敛技术。考虑不确定性预算约束可降低最优拓扑的保守性。通过基于蒙特卡罗模拟的 ACOPF 并附加负荷削减进行验证,证明了该设定值在 NESTA 和南卡罗来纳 500 节点系统上的鲁棒性。与以往方法和列与约束生成(C&CG)算法的比较凸显了所提出模型在实现鲁棒最优网络拓扑方面的有效性。

English Abstract

Integration of Renewable Energy Sources (RES) prompts a need for increased grid flexibility. While Optimal Transmission Switching (OTS) harnesses this flexibility, deterministic OTS fails to provide optimal topology for injection uncertainties from loads and RESs. This paper presents a novel two-level, three-stage formulation for robust AC OTS (ACOTS), addressing injection uncertainties in the day-ahead operation of power networks. Unlike previous formulations, the proposed model has no approximations of power flow equations. The master problem is a Mixed Integer Linear Programming (MILP) formulation that determines robust optimal network topology, serving as input to slave problems. The slave problems are solved sequentially, where the first slave is a deterministic AC Optimal Power Flow (ACOPF) problem, and the second slave unveils worst-case uncertainty, thereby co-optimizing dispatch in the considered uncertainty range. The proposed formulation is solved by Generalized Benders decomposition, which is devised with an accelerated convergence technique. Consideration of budget of uncertainty constraints reduces conservatism of optimal topology. Validation through Monte-Carlo Simulation-based ACOPF, appended with load curtailment, demonstrates the setpoints' robustness on NESTA and South Carolina 500 bus systems. Comparison with previous approaches and the Column-and-Constraint Generation Generation (C&CG) algorithm underscores the proposed model's effectiveness in achieving a robust optimal network topology.
S

SunView 深度解读

该鲁棒拓扑控制技术对阳光电源PowerTitan大型储能系统及ST系列储能变流器具有重要应用价值。研究中的半定规划松弛与N-1安全约束方法可直接应用于储能系统的功率调度优化,提升应对光伏出力波动的鲁棒性。结合阳光电源iSolarCloud云平台,可实现源网荷储协同优化:在电网拓扑动态调整场景下,储能系统通过预测性功率注入不确定性边界,优化充放电策略,保障电网安全约束的同时降低运行成本。该方法对构网型GFM储能系统的多场景适应性控制具有创新启发,可增强大规模新能源接入下的系统稳定性与经济性。