← 返回
光伏发电技术 GaN器件 ★ 5.0

知识集成GAN模型用于光伏并网分析中的全年天气随机时间序列模拟

Knowledge-Integrated GAN Model for Stochastic Time-Series Simulation of Year-Round Weather for Photovoltaic Integration Analysis

作者 Xueqian Fu · Fuhao Chang · Hongbin Sun · Pei Zhang · Youmin Zhang
期刊 IEEE Transactions on Power Systems
出版日期 2025年4月
技术分类 光伏发电技术
技术标签 GaN器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 天气随机模拟 生成式人工智能 数据知识融合 天气生成对抗网络 概率潮流计算
语言:

中文摘要

对于高比例光伏发电的电力系统随机生产模拟而言,气象模拟已变得至关重要。生成式人工智能已成为气象序列随机模拟的核心技术。鉴于生成式人工智能技术在内容生成方面的不可控性,本研究提出了一种由数据与知识融合驱动的年度气象场景随机模拟新方法。融合工作包括构建月度气象生成对抗网络(MWGAN)、一种基于统计概率知识的生成场景质量提升方法,以及一套用于评估生成气象场景的统计机器学习方法。利用中国广东某地48年的气象数据,对所提出的年度气象场景随机模拟方法进行了验证。通过将所提出的模型与五种前沿的生成对抗网络(GAN)和两种浅层统计机器学习模型进行比较,证实了该模型在模拟气象的时间特性和概率方面具有更优的性能。与用于对比的最佳生成对抗网络相比,Wasserstein距离平均降低了46%(距离越小,不确定性模拟越准确)。利用中国广东的一个实际配电网,验证了所提出的气象序列随机模拟方法在概率潮流计算中的有效性。

English Abstract

The simulation of weather has become crucial for stochastic production simulation in power systems with a high proportion of photovoltaic (PV) generation. Generative artificial intelligence (AI) has become the central technology for the stochastic simulation of weather sequences. This research presents a novel approach for the stochastic simulation of annual weather scenarios driven by data and knowledge fusion, in light of the uncontrollability in content production by generative AI technologies. The fusion work encompasses the establishment of the monthly weather generative adversarial network (MWGAN), a generative scenario quality enhancement approach based on statistical probability knowledge, and a suite of statistical machine learning methods for evaluating generated weather scenarios. Weather data from a location in Guangdong, China, over 48 years, was utilized to validate the proposed method for stochastic simulation of annual weather scenarios. By comparing the proposed model to five cutting-edge generative adversarial networks (GAN) and two shallow statistical machine learning models, the superior performance of the proposed model in simulating the temporality and probability of weather is confirmed. The Wasserstein distance is reduced by an average of 46% when compared to the best GAN used for comparison (the smaller the distance, the more accurate the simulation of uncertainty). The effectiveness of the proposed weather sequence stochastic simulation method for probabilistic load flow calculation is verified temporal stochastic using an actual distribution network in Guangdong, China.
S

SunView 深度解读

该知识集成GAN模型对阳光电源光伏储能系统具有重要应用价值。在SG系列光伏逆变器产品线,可用于优化MPPT算法的预测性控制,通过高保真气象序列模拟提升发电功率预测精度;在ST系列储能变流器及PowerTitan大型储能系统中,全年逐时天气随机模拟可支持储能容量优化配置与充放电策略制定,提升系统经济性;对iSolarCloud云平台,该技术可增强智能诊断与预测性维护能力,通过气象不确定性建模实现更精准的发电量预测和运维调度。此外,该方法融合物理约束的思路可启发阳光电源在构网型GFM控制中引入气象先验知识,提升光储系统在极端天气下的稳定性与鲁棒性。