← 返回
光伏发电技术 光伏逆变器 强化学习 ★ 5.0

基于多目标与多智能体深度强化学习的光伏逆变器寿命考虑下配电网实时分散式电压/无功控制

Multi-Objective and Multi-Agent Deep Reinforcement Learning for Real-Time Decentralized Volt/VAR Control of Distribution Networks Considering PV Inverter Lifetime

作者 Rudai Yan · Yan Xu
期刊 IEEE Transactions on Power Systems
出版日期 2024年8月
技术分类 光伏发电技术
技术标签 光伏逆变器 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏逆变器 电压/无功控制 多目标多智能体深度强化学习 帕累托前沿 分布式系统
语言:

中文摘要

光伏逆变器能够为配电网的电压/无功控制(VVC)提供快速且灵活的无功功率支持,但额外的无功功率输出会显著缩短其使用寿命。为平衡电压/无功控制性能与逆变器使用寿命之间的矛盾,本文首先提出了一种多目标实时分散式电压/无功控制框架。然后,开发了一种多目标多智能体深度强化学习(MOMADRL)算法,通过集中训练和分散执行来协调光伏逆变器,为传统的基于模型的方法提供了一种更具优势的替代方案,并且无需进行集中通信。通过引入多个智能体和基于智能体的并行训练方案(ABPTS),可以同时学习多种策略以找到帕累托前沿。最后,进行敏感性分析以获取帕累托前沿,并为运行人员选择合适的权重因子提供指导。在一个141节点配电网系统上的仿真结果验证了所提方法的有效性和高效性,该方法能够在延长逆变器使用寿命的同时实现电压调节,并降低网络能量损耗。所提出的多目标多智能体深度强化学习算法作为一种通用的多目标数据驱动方法,也适用于其他多目标问题。

English Abstract

PV inverters can provide prompt and flexible reactive power support to voltage/var control (VVC) of distribution networks, but their lifetime can be significantly reduced due to additional reactive power output. To balance the conflict between the VVC performance and the inverter lifetime, this paper firstly proposes a multi-objective real-time decentralized VVC framework. Then, a multi-objective multi-agent deep reinforcement learning (MOMADRL) algorithm is developed to coordinate the PV inverters through centralized training and decentralized implementation, offering an advantageous alternative to traditional model-based methods and eliminating the need for centralized communication. By incorporating multiple actors and an actors-based parallel training scheme (ABPTS), multiple policies can be concurrently learned to find the Pareto front. Lastly, sensitivity analysis is conducted to obtain the Pareto front and provide guidelines for operators in choosing the proper weighting factors. Simulation results on a 141-bus distribution system validate the effectiveness and efficacy of the proposed method, as voltage regulation can be achieved with an extended inverter lifetime, as well as reduced network energy loss. The proposed MOMADRL algorithm is also applicable to other multi-objective problems as a universal multi-objective data-driven approach.
S

SunView 深度解读

该多目标多智能体强化学习技术对阳光电源SG系列光伏逆变器的智能控制具有重要应用价值。研究提出的寿命损耗模型可直接应用于逆变器功率器件(IGBT/SiC模块)的热应力管理,通过优化无功调节频次降低温度循环冲击,延长功率模块使用寿命。分散式控制架构与iSolarCloud云平台的边缘智能策略高度契合,可实现光伏电站群的协同电压调节而无需集中通信。多目标优化框架平衡电压质量与设备寿命的思路,可扩展至ST储能系统的充放电策略优化,在提供电网辅助服务的同时最小化电池与变流器老化。该技术为阳光电源构建预测性维护与智能调度系统提供了理论支撑。