← 返回
基于个性化驾驶风格评分的电动汽车混合储能系统能量分配广义优化研究
A study on generalized optimization of energy distribution in electric vehicle hybrid energy storage system for personalized driving style scores
| 作者 | Lin Huad · Qingtao Tianb · Jing Huang · Dongjie Zhanga · Xianhui Wue · Xiaojian Yibd |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 341 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 混合动力储能系统 电动汽车 优化策略 驾驶风格分数 能量分配控制 |
语言:
中文摘要
在电动汽车(EV)混合储能系统(HESS)中,如何在优化超级电容器利用的同时平衡电池容量衰减与系统能量损耗,仍是一项关键挑战。本研究提出了一种基于个性化驾驶风格评分的广义优化策略。利用真实电动汽车运行数据,通过Lasso回归识别出用于能量分配控制的关键能耗参数。随后采用主成分分析(PCA)和K-means聚类方法将样本工况划分为三种驾驶风格:谨慎型、标准型和激进型。对各样本工况的综合得分进行归一化处理,得到个性化的驾驶风格评分,作为表征个体驾驶特性的核心指标。研究发现,驾驶风格评分与电池容量衰减及系统能量损耗之间均存在显著的线性相关性。基于此关系,构建了分段线性拟合模型,用于计算每种工况下电池容量衰减和系统能量损耗对总运行损耗的贡献程度。这些贡献值被映射为优化权重的取值范围,从而生成针对电池容量衰减和系统能量损耗的个性化权重。在此基础上,构建了一个广义加权优化成本函数,该函数可兼容多种优化算法。以灰狼优化算法(GWO)为例进行验证,结果表明:与未加权优化相比,所提出的加权优化策略使激进驾驶风格下的平均电池容量衰减额外降低8.43%,谨慎驾驶风格下的平均系统能量损耗额外减少5.09%。该方法有效提升了HESS中能量分配策略的灵活性与适用性。
English Abstract
Abstract Balancing battery capacity degradation and system energy loss while optimizing supercapacitor utilization remains a key challenge in hybrid energy storage system (HESS) for electric vehicle (EV). This study proposes a generalized optimization strategy based on personalized driving style scores. Using real-world EV data, Lasso regression identifies key energy consumption parameters for energy distribution control. Principal component analysis (PCA) and K-means clustering are then applied to classify the sample conditions into three driving styles: cautious, standard, and aggressive. The comprehensive scores for sample conditions are normalized to obtain individualized driving style scores, which serve as core indicators of personalized driving characteristics. A significant linear correlation is observed between the driving style scores and both battery capacity degradation and system energy loss. Based on this, a piecewise linear fitting model is constructed to calculate the contributions of battery capacity degradation and system energy loss to the total operational loss for each sample condition. These contributions are mapped to range of optimization weights, generating personalized weights for battery capacity degradation and system energy loss. A generalized weighted optimization cost function is then formulated, which is compatible with various optimization algorithms. Using GWO as an example, the results demonstrate that the proposed weighted optimization strategy reduces the average battery capacity degradation for aggressive driving styles by an additional 8.43% and decreases the average system energy loss for cautious driving styles by an additional 5.09% compared to non-weighted optimization. This enhances the flexibility and applicability of energy distribution in HESS.
S
SunView 深度解读
该混合储能优化技术对阳光电源ST系列储能变流器及充电桩产品具有重要价值。研究提出的个性化驾驶风格评分与分段线性优化策略,可应用于我司电动汽车充电站能量管理系统,通过识别用户充电行为特征,动态调整超级电容与电池功率分配权重,在激进充电模式下额外降低8.43%电池容量衰减,在保守模式下额外减少5.09%系统能量损耗。该通用化加权优化框架可与我司PowerTitan储能系统的GWO算法无缝集成,提升混合储能PCS的自适应控制能力,延长电池寿命并优化充电效率,为iSolarCloud平台增加个性化能量管理维度。