← 返回
电动汽车驱动 深度学习 ★ 5.0

基于多层感知机人工神经网络的频谱间谐波诊断方法

Multilayer Perceptron Artificial Neural Network-Based Solution for Interharmonics Diagnosis in Frequency Spectra

语言:

中文摘要

由于电力电子设备、可再生能源系统及相关技术的兴起,间谐波诊断变得愈发重要。IEC 61000 - 4 - 7 对频谱中间谐波幅值的计算进行了标准化;然而,该标准在间谐波识别和频率估计方面存在不足,这导致文献中出现了一些未遵循 IEC 61000 - 4 - 7 所确立框架的替代解决方案。本研究提出了一种基于多层感知器人工神经网络的新型间谐波诊断解决方案。作为一种后处理技术,该解决方案采用了 IEC 61000 - 4 - 7 中定义的间谐波组,并通过验证测量的含噪信号频谱中间谐波的存在性以及估计所识别间谐波的频率,对标准化方法进行了补充。使用合成信号对所提出的解决方案进行验证,间谐波识别的命中率达到 100%,频率估计的平均相对误差为 1.17%。还对一个带有变速驱动器的小型发电系统的实验结果进行了评估。因此,这种新方法为现代电网中的间谐波诊断提供了潜力。

English Abstract

Interharmonics diagnosis is increasingly important due to the rise of power electronic devices, renewable energy systems, and related technologies. The IEC 61000-4-7 standardizes the calculation of interharmonic amplitudes in a frequency spectrum; however, the standard has gaps in interharmonic identification and frequency estimation, which has led to alternative solutions in the literature that do not adhere to the framework established by the IEC 61000-4-7. This study proposes a novel interharmonics diagnosis solution based on Multilayer Perceptron Artificial Neural Networks. As a post-processing technique, the solution adopts the interharmonic group defined in IEC 61000-4-7 and complements the standardized method by verifying the existence of interharmonics in a spectrum of a measured, noisy signal, and estimating the frequency of the identified interharmonics. Validation of the proposed solution with synthetic signals presented a hit rate of 100% for interharmonics identification and an average relative error of 1.17% for the frequency estimation. Experimental results from a small power generation system with a variable speed drive are also evaluated. This new method, therefore, offers potential for interharmonics diagnosis in modern power grids.
S

SunView 深度解读

该基于MLP神经网络的间谐波诊断技术对阳光电源多条产品线具有重要应用价值。在ST储能变流器和SG光伏逆变器中,可精准识别PWM调制、MPPT扰动及并网控制产生的间谐波成分,突破IEC 61000-4-7标准FFT方法在动态工况下的分辨率瓶颈。对于电动汽车驱动系统和充电桩产品,该方法能有效诊断电机驱动器和DC-DC变换器在变频变载工况下的间谐波污染。技术可集成至iSolarCloud智能运维平台,实现电能质量的实时监测与预测性维护,提升构网型GFM控制系统的谐波抑制能力,为SiC/GaN高频开关器件应用提供精准的频谱分析工具。