← 返回
功率器件技术 SiC器件 故障诊断 ★ 5.0

内在与外在学习框架用于多设备初期故障检测与分类

Intrinsic and Extrinsic Learning Framework for Multi-Equipment Incipient Fault Detection and Classification

作者 Lixian Shi · Yang Weng · Qiushi Cui · Xiaodong Zheng · Wenyuan Li · Jian Li
期刊 IEEE Transactions on Industry Applications
出版日期 2024年9月
技术分类 功率器件技术
技术标签 SiC器件 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 早期故障 INTEL - IFD 加权Gramian矩阵 数据增强 故障识别
语言:

中文摘要

早期故障(IFs)是电力设备故障的先兆。由于发生频率低,早期故障数据十分稀缺。早期故障数据的稀缺导致识别早期故障存在困难。传统方法缺乏学习早期故障数据丰富且有意义表征的能力,尤其是在早期故障数据有限的情况下。此外,一些将波形转换为图像的方法在捕捉时间关系和分析波形失真方面并无优势。为解决这些问题,本文开发了一个名为INTEL - IFD的智能框架。在数据处理过程中,提出了一种加权早期故障格拉姆矩阵表达方法,以获得增强了早期故障特征的加权格拉姆图像,用于进一步基于图像的智能识别。为应对故障数据有限的挑战,开发了一种数据增强工具,包括数据扩展和图像增强。在建模过程中,INTEL - IFD结合了自监督学习和孪生网络的优势,设计了一种新颖的网络结构。由于该网络结构从两个学习过程中提取波形图像特征,因此能够深入挖掘早期故障的特征。基于现场早期故障数据,INTEL - IFD的早期故障检测准确率和分类准确率分别达到了0.9583和0.8542。这些具有代表性的结果证明了INTEL - IFD在配电网系统早期故障识别中的有效性。

English Abstract

Incipient faults (IFs) are the precursors of power equipment failures. Due to the low occurrence frequency, IF data are scarce. The scarcity of IFs leads to the difficulty of identifying IFs. Traditional methods lack the ability to learn rich and meaningful representations of IF data, especially under the circumstance of limited IF data. Besides, some methods that involve transforming waveforms into images do not yield advantages in capturing temporal relationships and analyzing waveform distortion. To address these problems, an intelligent framework called INTEL-IFD is developed. In the data process, a weighted IF Gramian matrix expression method is proposed to obtain weighted Gramian images with augmented IF characteristics for further image-based intelligent identification. To address the challenges of limited fault data, a data enhancement tool, including data expansion and image augmentation, is developed. In the modeling process, INTEL-IFD combines the advantages of self-supervised learning and Siamese networks to design a novel network structure. Since the network structure extracts waveform image features from two learning processes, the features of IFs are thoroughly mined. Based on field IF data, the IFs detection and classification accuracy of INTEL-IFD reached 0.9583 and 0.8542, respectively. The representative results demonstrate the effectiveness of INTEL-IFD in identifying IFs in distribution systems.
S

SunView 深度解读

该内在与外在学习框架对阳光电源的功率器件故障预测具有重要应用价值。可应用于ST系列储能变流器、SG系列光伏逆变器中的SiC功率模块故障预警,以及PowerTitan大型储能系统的预测性维护。通过挖掘有限故障样本的深层特征并引入外部知识,可提升iSolarCloud平台对功率器件初期故障的诊断准确率。这对提高产品可靠性、降低维护成本具有积极意义。特别是在大功率储能与光伏应用场景下,该方法可有效预防因功率器件故障导致的系统停机,提升产品竞争力。建议将该技术整合到智能运维系统中,实现设备全生命周期的健康管理。