← 返回
储能系统技术 储能系统 可靠性分析 ★ 5.0

基于超薄弹性体上可拉伸互连的电学与力学表征的可靠性评估

Reliability Assessment using Electrical and Mechanical Characterization of Stretchable Interconnects on Ultrathin Elastomer for Emerging Flexible Electronics System

语言:

中文摘要

可拉伸电子学是一种新兴技术,它使电子电路在受到外力作用时能够通过伸长来完美地适应周围环境。将可拉伸互连与可变形材料以及优化的几何形状相结合,为高性能可拉伸电子学开辟了道路。可拉伸互连在保持功能的同时所能承受的拉伸和弯曲程度是至关重要的参数。本文旨在阐明弹性体基底对可拉伸互连的力学影响。在当前的分析中,考虑使用聚二甲基硅氧烷(PDMS)弹性体基底。研究了五种不同的可拉伸互连结构,即直线形(St)、锯齿形(Zz)、蛇形(Sp)、马蹄形(Hs)和矩形(Rt)。针对所有考虑的可拉伸互连提取了电阻(<i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R</i>)、电感(<i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i>)和电容(<i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i>)等电气参数,以评估互连在变形影响下的导电性。此外,基于曼森公式制定了应变寿命周期,并在ANSYS Workbench上使用基于有限元分析(FEA)的方法进行了疲劳循环测试,这证实了所考虑的可拉伸互连的力学可靠性。对所考虑的互连在不同频率下进行了信号完整性分析。最后,利用实验模型结果验证了互连模型。

English Abstract

Stretchable electronics is one of the emerging technologies that empowers electronic circuits to gracefully adjust to their surroundings by elongating when subjected to external forces. Integrating stretchable interconnects with deformable materials and optimum geometries establishes a path to high-performance stretchable electronics. The amount of stretch and bend that stretchable interconnect can endure while maintaining functionality are critically important parameters. This article aims to illustrate the mechanical impact of the elastomeric substrate on the stretchable interconnect. In the present analysis, polydimethylsiloxane (PDMS) elastomeric substrate is considered. Five different stretchable interconnect structures viz. straight (St), zigzag (Zz), serpentine (Sp), horseshoe (Hs), and rectangle (Rt), are considered. The electrical parameters, viz. resistance (R), inductance (L), and capacitance (C), are extracted for all the considered stretchable interconnects to assess the conductivity of the interconnect under deformation effects. Furthermore, the Manson formulation-based strain life cycle is formulated, and a fatigue cycle test is performed using a finite element analysis (FEAs) based method on ANSYS Workbench, which confirms the mechanical reliability of the considered stretchable interconnects. The signal integrity analysis of the considered interconnects is performed at varying frequencies. Finally, the interconnect models are verified using experimental model results.
S

SunView 深度解读

从阳光电源的业务视角来看,这项关于超薄弹性基板上可拉伸互连技术的研究具有重要的前瞻性价值。该技术通过PDMS弹性基板与优化几何结构(直线、之字形、蛇形、马蹄形、矩形)的集成,实现了电子电路在机械形变下的可靠运行,这与我们在新能源领域面临的多项技术挑战高度契合。

在光伏应用场景中,该技术可显著提升组件的环境适应性。传统刚性互连在温度循环、机械振动和安装应力下容易产生疲劳失效,而可拉伸互连技术能有效吸收这些应力,延长组件寿命。论文中基于Manson公式的应变寿命周期分析和有限元疲劳测试方法,为我们评估光伏接线盒、汇流条等关键部件的长期可靠性提供了新的工程工具。

对于储能系统,该技术在电池模组互连方面展现出独特价值。储能电池在充放电过程中会产生热胀冷缩,柔性互连可减少应力集中,降低接触电阻波动。论文对电阻、电感、电容等电气参数在形变条件下的表征,直接关联到储能系统的能量转换效率和信号完整性。

然而,技术应用仍面临挑战:PDMS材料的长期老化特性、高电流密度下的导电稳定性、以及成本控制等问题需要进一步验证。建议我们关注该技术在柔性光伏、可穿戴能源设备等新兴市场的应用潜力,同时评估将其集成到现有产品线的可行性,特别是在提升产品环境适应性和延长使用寿命方面的实际效益。