← 返回
高密度玻璃中介层中小直径、高深宽比通孔玻璃的双面铜填充
Double-Sided Copper Filling of Small Diameter, High-Aspect Ratio Through-Glass Vias in High-Density Glass Interposers
| 作者 | Ye Yang · Kelly E. Lahaie · Tiwei Wei |
| 期刊 | IEEE Transactions on Components, Packaging and Manufacturing Technology |
| 出版日期 | 2025年4月 |
| 技术分类 | 功率器件技术 |
| 技术标签 | GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 玻璃基板 通孔玻璃过孔(TGVs) 高纵横比 硼硅酸盐玻璃 双面种子层增强(SLE) |
语言:
中文摘要
与目前的有机基板相比,玻璃基板具有显著优势,尤其适用于人工智能(AI)等数据密集型应用的高密度、高性能芯片封装。超低平整度的玻璃可增强光刻的焦深,有助于在先进的金属互连中进行精确图案化。此外,其卓越的热稳定性可最大程度减少图案畸变,出色的机械稳定性能够支持超大尺寸的封装。这些优异的尺寸稳定性特性有助于实现精确的层间互连对准,最终使玻璃基板的互连密度达到有机基板的十倍。然而,制造高密度、小直径、高深宽比(AR)的玻璃通孔(TGV)仍然是一项重大挑战。目前最先进的垂直TGV技术可实现12的深宽比,通孔直径小于30微米。在本研究中,我们首次展示了在300微米厚的硼硅酸盐玻璃上制作直径为20微米的笔直TGV,实现了创纪录的15深宽比。由于大面积封装成本低、热膨胀系数低、热稳定性优异以及高频运行时的低电损耗,硼硅酸盐被选为我们研究中的玻璃基板。对于笔直、高深宽比的TGV,本研究探索了一种采用化学沉积来增强种子层的双面种子层增强(SLE)方法,并结合电镀策略来制造无空隙、完全填充的笔直TGV金属互连。对SLE工艺的参数研究为未来高互连密度的三维集成系统制造高深宽比TGV提供了有价值的见解和指导。
English Abstract
Glass substrates offer significant advantages over current organic substrate, particularly in high-density, high-performance chip packaging for data-intensive applications such as artificial intelligence (AI). Glass with ultralow flatness enhances the depth of focus in lithography, which helps pattern precisely at advanced metal interconnects. In addition, their superior thermal stability minimizes pattern distortion, and their outstanding mechanical stability supports ultralarge package sizes. These exceptional dimensional stability properties facilitate precise layer-to-layer interconnect alignment, ultimately enabling glass substrates to achieve ten times higher interconnect density compared to organic substrates. However, fabricating high-density, small-diameter, high-aspect ratio (AR) through-glass vias (TGVs) remains a significant challenge. The current state-of-the-art technology for vertical TGVs achieves an AR of 12, with a via diameter of 30~ m. In this work, we present the first demonstration of straight TGVs with 20- m diameters on 300- m thick borosilicate glass, achieving a record-high AR of 15. Thanks to the low large-area packaging cost, low thermal expansion coefficient, excellent thermal stability, and low electrical dissipation in high-frequency operation, borosilicate is chosen as the glass substrate in our research. For straight, high AR TGVs, this study explores a double-sided seed layer enhancement (SLE) approach using electroless deposition to reinforce the seed layer, combined with an electroplating strategy to produce void-free, fully filled straight TGVs metal interconnects. The parameter study of the SLE process provides valuable insights and guidelines for fabricating high AR TGVs for future high interconnect density 3-D integration systems.
S
SunView 深度解读
从阳光电源的业务视角来看,这项玻璃基板高密度互连技术虽然聚焦于半导体封装领域,但对我们新能源产品的智能化升级具有重要战略意义。
**业务相关性分析**
该技术实现了直径20微米、深宽比达15的穿玻璃通孔(TGV),互连密度比有机基板高出十倍。这对阳光电源的核心产品——光伏逆变器和储能系统的控制单元升级具有直接价值。当前我们的功率电子产品正朝着高功率密度、高效率方向发展,对控制芯片的算力和集成度要求持续提升。特别是在大型地面电站和工商业储能场景中,AI驱动的智能运维、实时功率预测、电网调度优化等功能需要强大的边缘计算能力。
**技术价值评估**
玻璃基板的低热膨胀系数和优异热稳定性,与我们功率电子产品面临的宽温域工作环境(-40°C至70°C)高度契合。硼硅酸盐玻璃的低介电损耗特性可显著改善高频开关电路的信号完整性,这对提升逆变器的开关频率、降低电磁干扰具有积极意义。更重要的是,高密度互连技术能支撑AI芯片的封装需求,为我们未来在储能系统中部署边缘AI算法、实现毫秒级电网响应提供硬件基础。
**挑战与机遇**
当前该技术尚处于实验室阶段,双面铜填充工艺的良率和成本控制是主要挑战。但考虑到新能源行业对智能化的迫切需求,建议阳光电源密切跟踪该技术的产业化进程,评估在下一代智能控制器中采用玻璃基板封装方案的可行性,抢占智能化竞争的技术高地。