← 返回
功率MOSFET器件中传热与热失控的理论与仿真研究
Theoretical and Simulation-Based Investigation of Heat Transfer and Thermal Runaway in Power MOSFET Devices
| 作者 | Arun Narasimhan · Rajesh Rao · Ankur Jain |
| 期刊 | IEEE Transactions on Components, Packaging and Manufacturing Technology |
| 出版日期 | 2024年12月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 功率MOSFET 温度上升预测 安全工作区 热分析技术 热失控预测 |
语言:
中文摘要
预测功率金属 - 氧化物 - 半导体场效应晶体管(MOSFET)器件的温度上升对于确保其可靠性和性能以及防止热失控至关重要。虽然通常会为功率MOSFET的运行规定安全工作区(SOA),但通过实验确定安全工作区内防止热失控的漏极电流限制非常繁琐,而且常常会导致多个测试器件在达到极限时损坏。因此,仍然需要强大而准确的理论工具来预测实际功率MOSFET中的最大允许漏极电流。本研究通过解析和数值传热建模来满足这一重要需求。基于沟道区域周围半无限介质中一维热流的简化假设,采用拉普拉斯变换技术推导出器件中瞬态温度分布的解析解。通过将预测的峰值温度与脉冲持续时间内的最高允许温度进行比较,预测安全工作区的热失控极限。此外,针对更一般的几何形状开发了数值传热模拟,在这些情况下,一维热流假设可能并不成立。将解析模型和数值模拟的结果与几种市售MOSFET制造商规定的安全工作区进行了比较,在每种情况下都显示出良好的一致性。这证明了本文所开发的技术无需进行繁琐测量即可预测安全工作区的能力。研究表明,最高温度以及最大允许漏极电流并不取决于沟道宽度。还研究了漏极电流温度系数对热性能的影响。本研究的关键创新之处在于开发了两种不同的功率MOSFET热分析技术,包括热失控预测。这种能力是预测安全工作区时替代繁琐且具有破坏性测试的一种实用且有效的方法。
English Abstract
Prediction of temperature rise in power MOSFET devices is of critical importance to ensure reliability and performance, and to prevent thermal runaway. While a safe operating area (SOA) is often prescribed for power MOSFET operation, experimentally determining the drain current limitation in the SOA to prevent thermal runaway is very cumbersome and often results in destruction of multiple devices tested to the limits. There remains a need for robust and accurate theoretical tools to predict the maximum allowable drain current in practical power MOSFETs. This work addresses this important need through analytical and numerical heat transfer modeling. Based on a simplifying assumption of 1-D heat flow in semi-infinite media surrounding the channel region, a Laplace transforms technique is used to derive an analytical solution for the transient temperature distribution in the device. Thermal runaway limits of the SOA are predicted by comparison of the predicted peak temperature with the maximum permissible temperature over the pulse duration. In addition, a numerical heat transfer simulation is developed for more general geometries, in which the 1-D heat flow assumption may not be valid. Results from both analytical model and numerical simulations are compared with manufacturer-specified SOA of several commercially available MOSFETs, showing good agreement in each case. This demonstrates the capability of the techniques developed here to predict the SOA without the need for cumbersome measurements. It is shown that the maximum temperature, and hence, the maximum allowable drain current does not depend on the channel width. The impact of the temperature coefficient of drain current on thermal performance is also investigated. The key novelty of this work is in developing two distinct techniques for thermal analysis of power MOSFETs, including thermal runaway prediction. This capability is a useful and practical alternative to cumbersome and destructive testing for predicting the SOA.
S
SunView 深度解读
从阳光电源的业务视角来看,这项关于功率MOSFET热传导和热失控预测的研究具有重要的工程应用价值。功率MOSFET是光伏逆变器和储能变流器中的核心功率器件,其热管理直接关系到系统的可靠性、效率和寿命。
该研究的核心价值在于提供了两种互补的热分析方法:基于拉普拉斯变换的解析解和数值仿真模型。这使得我们能够在设计阶段就准确预测器件的安全工作区(SOA),避免传统方法中反复的破坏性测试,显著降低研发成本和周期。对于阳光电源而言,这意味着可以更快速地完成新一代高功率密度逆变器和储能系统的开发,特别是在1500V高压系统和大功率工商业储能产品中,器件的热管理挑战尤为突出。
研究揭示的关键发现——最大允许漏极电流不依赖于沟道宽度——为器件选型和并联设计提供了重要指导。同时,对漏极电流温度系数影响的分析,有助于优化器件在宽温度范围(-40℃至+85℃)下的性能表现,这对于应对全球不同气候环境的项目部署至关重要。
从技术成熟度看,该方法已通过多个商用MOSFET的验证,具备较强的实用性。主要挑战在于如何将这些模型集成到现有的电路仿真平台,并考虑实际应用中的封装热阻、散热器设计等系统级因素。建议阳光电源的功率器件团队与研发部门合作,将此方法纳入器件选型和热设计流程,特别是在开发超大功率(350kW以上)集中式逆变器和兆瓦级储能系统时,这将成为提升产品竞争力的关键技术工具。