← 返回
用于功率模块的高温电子封装:烧结与瞬态液相键合技术的研究进展
High-temperature electronic packaging for power modules: advances in sintering and transient liquid phase bonding technologies
| 作者 | Kai Cao · Zehou Li |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 功率模块 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 烧结 瞬态液相键合 高温电子封装 热稳定性 功率密度 |
语言:
中文摘要
随着电动汽车(EV)功率模块对热稳定性和功率密度需求的不断提升,传统封装技术面临诸多挑战,包括导热性能不足、高温可靠性有限以及环境兼容性欠佳等问题。本文系统综述了两种关键的高温电子封装技术——烧结与瞬态液相(TLP)键合技术的最新研究进展。重点探讨了银(Ag)、铜(Cu)和镍(Ni)基烧结材料在功率模块应用中的微观结构调控机制,分析了颗粒尺寸、形貌及溶剂选择对烧结致密度、电导率、热导率和机械强度的影响。本文还比较评述了压力烧结、无压烧结和激光辅助烧结等先进工艺,聚焦其在降低孔隙率、抑制氧化以及增强界面结合强度方面的作用机理。此外,深入探讨了瞬态液相键合的技术特性,强调其通过高熔点金属间化合物实现低温连接与高温性能兼具的优势。研究结果表明,烧结技术凭借优异的导热性能和机械强度,为高温封装提供了可靠解决方案,而瞬态液相键合则显著提升了高温稳定性。未来的研究应致力于优化多模态颗粒设计,开发低成本、可持续的封装材料,并集成超声波和感应加热等新型工艺,以拓展这些技术在宽禁带半导体器件中的应用范围。
English Abstract
The increasing demand for enhanced thermal stability and power density in electric vehicle (EV) power modules presents challenges for conventional packaging technologies, including inadequate thermal conductivity, limited high-temperature reliability, and suboptimal environmental compatibility. This review systematically summarizes recent advances in two pivotal high-temperature electronic packaging technologies: sintering and transient liquid phase (TLP) bonding. It examines microstructural regulation mechanisms in silver (Ag), copper (Cu), and nickel (Ni)-based sintering materials for power module applications. The analysis covers the effects of particle size, morphology, and solvent selection on sintering density, electrical and thermal conductivity, and mechanical strength. A comparative assessment of advanced processes such as pressure sintering, pressureless sintering, and laser-assisted sintering is presented, focusing on their mechanisms for reducing porosity, mitigating oxidation, and enhancing interface bonding strength. Additionally, TLP bonding characteristics are explored, emphasizing its advantages in low-temperature connections and high-temperature performance via high-melting point intermetallic compounds. The findings show that sintering technology provides a robust solution for high-temperature packaging with superior thermal conductivity and mechanical strength, while TLP enhances high-temperature stability. Future research should optimize multimodal particle design, develop cost-effective, sustainable materials, and integrate processes like ultrasound and induction heating to expand these technologies' application in wide-bandgap semiconductor devices.
S
SunView 深度解读
该高温封装技术对阳光电源功率模块产品具有重要应用价值。银铜烧结和瞬态液相键合技术可显著提升SiC/GaN功率器件的热导率和高温可靠性,直接优化ST系列储能变流器、SG光伏逆变器及电动汽车驱动系统的功率密度与热管理性能。多模态颗粒设计和无压烧结工艺可降低封装成本,激光辅助烧结技术有助于三电平拓扑模块的界面键合强化。建议将该技术应用于1500V高压系统和充电桩大功率模块,提升极端工况下的长期稳定性,并结合iSolarCloud平台实现封装健康状态的预测性维护。