← 返回
陶瓷基板嵌入式SiC功率模块的设计与制造
Design and Fabrication of a Ceramic Substrate-Embedded SiC Power Module
| 作者 | Lisheng Wang · Junyun Deng · Keqiu Zeng · Haoguan Cheng · Qiang Wu · Jian Lin |
| 期刊 | IEEE Transactions on Components, Packaging and Manufacturing Technology |
| 出版日期 | 2025年2月 |
| 技术分类 | 功率器件技术 |
| 技术标签 | 宽禁带半导体 SiC器件 功率模块 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 宽禁带功率模块 嵌入式封装技术 激光钻孔工艺窗口 热机械应力 碳化硅模块原型 |
语言:
中文摘要
摘要:与传统的引线键合技术相比,宽带隙(WBG)功率模块的嵌入式封装具有更低的寄生电感、更高的开关频率和更低的功率损耗。然而,目前的嵌入式技术存在激光钻孔工艺窗口较窄且可靠性未知的问题。本文提出了一种新的嵌入式封装技术,该技术可使热机械界面应力最小化,并放宽工艺窗口。为此,采用了预烧结芯片顶部系统(DTS)层,以改善激光钻孔工艺窗口,并使顶部互连处的界面应力最小化。为了设计和制造所提出的新型嵌入式功率模块,还研究了不同陶瓷与层压树脂之间的相互作用。此外,通过有限元多物理场模拟分析并比较了所提出的嵌入式、传统嵌入式和引线键合功率模块的热特性和热机械应力特性,以评估这三种封装方法的性能。模拟结果表明,尽管与其他衬底材料相比,氮化硅(Si₃N₄)的最大冯·米塞斯应力最高,但所获得的最大应力远低于其抗弯强度,因此它是衬底材料的最佳选择。基于所提出的嵌入式技术制造的碳化硅(SiC)模块原型显示出良好的激光钻孔性能,从而获得了优异的电镀质量。此外,我们的制造结果与面外变形模拟结果吻合良好。最后,由于DTS层的保护作用,所提出的模块具有良好的可重复性和工艺稳定性。
English Abstract
Embedded packaging of wide-bandgap (WBG) power modules offers an inherently lower parasitic inductance, higher switching frequency, and lower power losses compared to traditional wire-bonding technology. However, the present embedded technology suffers from a relatively tight laser drilling process window and unknown reliability. This work presents a new embedded packaging technology with minimal thermomechanical interfacial stress and a relaxed process window. For this purpose, a presintered die top system (DTS) layer for an improved laser drilling process window with minimal interfacial stress in the topside interconnection is adopted. To design and fabricate the proposed new embedded power module, the interaction between different ceramics and the lamination resin is also studied. Furthermore, the thermal and thermomechanical stress characteristics of the proposed embedded, conventional embedded, and wire-bonded power modules have been analyzed and compared through FEM multiphysics simulations to evaluate the performance of the three packaging approaches. The simulations indicate that despite the maximum von Mises stress of silicon nitride (Si3N4) is the highest compared to its substrate counterparts, the obtained maximum stress is much lower than its flexural strength and thus is the best choice of the substrate material. The silicon-carbide (SiC) module prototypes fabricated based on the proposed embedding technique show a good laser drilling performance, resulting in excellent plating quality. In addition, our fabrication results show good agreement with the out-of-plane deformation simulation results. Finally, the proposed module exhibits good reproducibility and process stability due to the protection of the DTS layer.
S
SunView 深度解读
从阳光电源的业务视角来看,这项基于陶瓷基板的SiC功率模块嵌入式封装技术具有重要的战略价值。该技术通过预烧结顶层系统(DTS)实现了更低的寄生电感、更高的开关频率和更低的功率损耗,这直接契合了我们光伏逆变器和储能变流器向高功率密度、高效率方向发展的核心需求。
在技术价值层面,该嵌入式封装相比传统引线键合技术能够显著降低寄生电感,这对于我们1500V及以上高压大功率逆变器产品至关重要。更高的开关频率意味着可以缩小无源器件体积,直接提升系统功率密度,这在工商业储能和户用光伏等空间受限场景中具有明显竞争优势。论文中采用氮化硅(Si3N4)作为基板材料的选择也值得关注,其优异的热机械性能可有效应对我们产品在沙漠、高原等极端环境下的可靠性挑战。
从技术成熟度评估,该方案通过DTS层改善了激光钻孔工艺窗口,并降低了热机械应力,显示出良好的工艺稳定性和可重复性。但作为新兴封装技术,其长期可靠性数据仍需积累,这是我们在产品导入时需要重点验证的方面。
技术机遇在于,随着SiC器件在新能源领域的快速渗透,掌握先进封装技术将成为产品差异化的关键。建议我们的研发团队关注该技术与高温工况的适配性,以及在大规模量产中的成本控制策略。此外,可探索与上游封装厂商的深度合作,将该技术率先应用于我们的旗舰产品线,抢占技术制高点。