← 返回
基于Transformer及其变体的商用质子交换膜燃料电池系统电压衰减预测
Voltage degradation prognostics for commercial proton exchange membrane fuel cell system based on Transformer and its variants
| 作者 | Baobao Hua · Zhiguo Qua · Yukun Songb · Keyong Wangb · Zhongjun Houb |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 343 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 工商业光伏 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Two aging mode tests were conducted on a 60 kW commercial fuel cell system. |
语言:
中文摘要
Transformer及其变体在预测质子交换膜燃料电池性能衰减方面展现出显著潜力,能够准确捕捉衰减模式,从而为控制策略提供依据并延长系统寿命。然而,尽管已有研究取得了进展,这些模型在商用高功率燃料电池上的适用性仍不明确,因为现有研究主要集中在小规模实验室电堆上。为弥补这一空白,本研究针对一个60 kW的商用燃料电池系统,在两种不同的氢气供应条件(常温与低温)下开展了各1000小时的老化试验。针对每种工况的原始数据,采用基于特征电流的数据提取方法,根据动态负载循环中的电流分布选取了三个具有代表性的特征电流进行数据提取。经过预处理后,获得了对应于三个特征电流的老化数据集。以单电池电压作为老化特征参数,构建了Transformer及四种其变体模型(Informer、Half-Transformer、Half-Informer和Autoformer)用于衰减趋势预测。对比分析结果表明,Autoformer在老化电压预测精度方面表现最优。其鲁棒性在多步预测、训练集缺失以及多变量输入等多种场景下进一步得到验证,在不同条件下均保持了较高的预测精度。在累积分布80%和90%水平下的绝对预测误差偏差均保持在10 mV以下。上述结果表明,Autoformer具备较强潜力集成至燃料电池控制系统中,在健康状态管理方面具有良好的应用前景,可有效提升系统的实用价值。
English Abstract
Abstract Transformer and its variants show significant potential for predicting proton exchange membrane fuel cell performance degradation, enabling accurate capture of degradation patterns to inform control strategies and extend lifespan. However, despite advancements, their applicability to commercial high-power fuel cells remains unclear, as existing researches focus primarily on small-scale laboratory stacks. Addressing this gap, this study investigates a 60 kW commercial fuel cell system under two 1000-hour aging test modes with different hydrogen supply conditions (ambient vs. low temperature). A characteristic current-based data extraction method was employed for the raw data associated with each mode. Three representative characteristic currents were selected based on the current distribution of dynamic load cycles for data extraction. Following the preprocessing, aging datasets for three characteristic currents were obtained. Single cell voltage was selected as the aging feature parameter to construct Transformer and four variants (Informer, Half-Transformer, Half-Informer, and Autoformer) for degradation prediction. Comparative analysis revealed Autoformer’s superior aging voltage prediction accuracy. Its robustness was further validated under multi-step prediction, training set missing, and multivariate input scenarios, maintaining high accuracy across diverse conditions. The deviation of absolute prediction errors at the 80 % and 90 % cumulative distribution levels remained below 10 mV. These results demonstrate Autoformer’s strong potential for integration into fuel cell control systems, offering promising applications in health management to enhance practical value.
S
SunView 深度解读
该Transformer变体预测技术对阳光电源氢能储能系统及PowerTitan产品线具有重要价值。Autoformer模型在商用60kW燃料电池系统的电压衰减预测中展现出10mV级高精度,可直接应用于ST系列PCS的健康管理模块。其多步预测和缺失数据鲁棒性特性,与iSolarCloud平台的预测性维护功能高度契合,可构建燃料电池-储能混合系统的智能寿命管理策略。特征电流提取方法为动态负载下的GFM控制优化提供数据基础,助力阳光电源拓展氢储能与多能互补解决方案的商业化应用。