← 返回
采用栅极凹槽结构的局部GaN帽层刻蚀以提升0.15-μm AlGaN/GaN HEMT的高功率附加效率性能及陷阱分析
Localized GaN Cap Etching With Gate-Recessed Structure for Enhanced High-PAE Performance and Trap Analysis in 0.15- μ m AlGaN/GaN HEMTs
| 作者 | Beibei Lv · Siyuan Ma · Jiongjiong Mo |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 栅极刻蚀策略 AlGaN/GaN HEMTs 功率附加效率 电流崩塌 陷阱动力学 |
语言:
中文摘要
本文针对用于高功率附加效率(PAE)应用的0.15微米铝镓氮(AlGaN)/氮化镓(GaN)高电子迁移率晶体管(HEMT),全面研究了栅极刻蚀策略对其电学性能和陷阱动力学的影响。通过比较不同刻蚀深度的器件及其标准非刻蚀对照器件,我们系统地研究了器件性能与工艺诱导损伤之间的权衡关系。去除GaN帽层的器件实现了创纪录的1393 mA/mm输出电流密度和661 mS/mm的峰值跨导,由于载流子浓度增加以及更高的$L_{\text {g}}$/$t_{\text {AlGaN}}$,短沟道效应(SCE)有所降低。值得注意的是,栅极刻蚀器件在10 GHz下获得了最佳刻蚀深度,功率附加效率达到81.6%,输出功率为27.1 dBm。通过应力测量和射频跨导分析,我们量化了电感耦合等离子体(ICP)刻蚀引起的电流崩塌和边界陷阱的空间分布。结果表明,局部去除GaN帽层是一种减轻损伤、增强栅极控制的有效途径,而过度减薄势垒层会降低二维电子气(2DEG)浓度并加剧陷阱形成,导致性能下降。这项工作为通过平衡结构优势和工艺诱导缺陷来优化高频功率放大器的栅极刻蚀设计提供了关键见解。
English Abstract
This article presents a comprehensive study on the impact of gate recessing strategies on the electrical performances and trap dynamics of 0.15- m aluminum gallium nitride (AlGaN)/gallium nitride (GaN) high-electron-mobility transistors (HEMTs) for high power-added efficiency (PAE) applications. By comparing devices with varying recess depths and their standard nonrecessed counterpart, we systematically investigate the trade-offs between device performance and process-induced damage. Device with GaN cap removal achieves a record output current density of 1393 mA/mm and a peak transconductance of 661 mS/mm, with reduced short-channel effects (SCEs) due to an increase in carrier concentration and a higher L_ g / t_ AlGaN . Notably, the gate-recessed device obtains an optimal recess depth with a PAE of 81.6% and Pout of 27.1 dBm at 10 GHz. Through stress measurement and RF transconductance analysis, we quantify the current collapse and the spatial distribution of border traps induced by inductively coupled plasma (ICP) etching. The results highlight that localized GaN cap removal offers a damage-mitigated pathway to enhance gate control, while excessive barrier thinning decreases the 2DEG concentration and exacerbates trap formation, leading to performance degradation. This work provides critical insights into optimizing gate-recessed designs for high-frequency power amplifiers by balancing structural benefits and process-induced defects.
S
SunView 深度解读
从阳光电源的业务视角来看,这项关于AlGaN/GaN高电子迁移率晶体管(HEMT)的栅极凹槽技术研究具有重要的战略价值。GaN功率器件是光伏逆变器和储能变流器实现高频化、高效化、小型化的关键技术路径,直接关系到我们产品的核心竞争力。
该研究通过优化栅极凹槽深度,在0.15微米工艺节点实现了81.6%的功率附加效率(PAE)和1393 mA/mm的输出电流密度,这对我们的高频逆变器和DC-DC转换器设计具有直接借鉴意义。更高的PAE意味着更低的开关损耗和散热需求,可显著提升系统级效率并降低热管理成本。特别是在储能双向变流器和光伏组串式逆变器中,采用高性能GaN器件能够提高开关频率至数百kHz甚至MHz级别,从而减小磁性元件体积,提升功率密度。
论文揭示的陷阱效应(trap dynamics)分析对我们的产品可靠性设计尤为关键。研究指出ICP刻蚀引入的边界陷阱会导致电流崩塌和性能退化,这与我们在实际应用中观察到的GaN器件长期可靠性问题高度相关。通过局部化GaN帽层去除策略平衡栅极控制能力与工艺损伤,为我们优化器件选型和供应商技术规格制定提供了理论依据。
技术挑战方面,该工艺的量产一致性和成本控制仍需验证,且高频应用对封装寄生参数极为敏感。但考虑到GaN技术的快速成熟和成本下降趋势,建议我们加强与GaN器件供应商的联合开发,在下一代高频逆变器平台中预研此类先进器件的应用方案,抢占技术制高点。