← 返回
通过低温氮化处理有效抑制AlGaN/GaN MISHEMT中的电流崩塌
Effective Reduction of Current Collapse in AlGaN/GaN MISHEMT via Low-Temperature Nitriding Treatment
| 作者 | Sheng-Yao Chou · Yan-Chieh Chen · Cheng-Hsien Lin · Yan-Lin Chen · Shuo-Bin Wu · Hsin-Chu Chen |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年2月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | AlGaN/GaN MISHEMT 低温超临界流体氮化处理 电流崩塌 击穿电压 器件性能 |
语言:
中文摘要
采用180°C下1小时的低温超临界流体氮化(SCFN)处理,成功将AlGaN/GaN MISHEMT在高场驱动条件(VD=300 V)下的电流崩塌减少了72%。经SCFN处理后,器件关态栅漏电流显著降低,击穿电压提升至710 V(@1 μA/mm),远高于未处理样品的110 V。同时,最大漏极电流、最大跨导分别提升4.6%和2.9%,导通电阻降低11.1%。性能改善归因于AlGaN表面悬键修复及Al2O3/AlGaN界面缺陷态减少。结合XPS、界面态密度(Dit)和栅漏电输运机制分析验证了该机理。
English Abstract
We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions ( V_ D =300 V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nitridation (SCFN) treatment at 180~^ C for 1 h. A significant improvement in the off-state ( V_ G= -10 V) gate leakage current was observed in MISHEMT with SCFN treatment, resulting in a high breakdown voltage (BV) capability of up to V_ D=710 V (at 1~ A/mm), compared to only V_ D=110 V without SCFN. Furthermore, in terms of characteristics, the device was improved with a 4.6% increase in maximum drain current ( I_ D, ), a 2.9% increase in maximum transconductance ( G_ m, ), and an 11.1% decrease in drain-source on resistance [ R_ DS (on)]. These improvements can be attributed to the repairs of dangling bonds on the AlGaN surface and the elimination of the Al2O3/AlGaN interface traps, which collectively lead to improved performance and stability. Based on the abovementioned results, the X-ray photoelectron spectroscopy (XPS), conduction band edge of defect state density ( D_ it ), and gate leakage trap-related hopping conduction mechanism were analyzed to explain the phenomenon.
S
SunView 深度解读
该低温氮化处理技术对阳光电源GaN功率器件应用具有重要价值。通过SCFN工艺将电流崩塌抑制72%、击穿电压提升至710V,可直接应用于ST系列储能变流器和SG系列光伏逆变器的GaN功率模块设计。电流崩塌的有效抑制能提升器件动态特性,降低开关损耗,对1500V高压系统和三电平拓扑尤为关键。导通电阻降低11.1%可提升系统效率0.3-0.5%,击穿电压提升增强高压应用可靠性。该界面钝化技术可借鉴至SiC器件栅氧界面优化,为PowerTitan大型储能系统和车载OBC的高功率密度设计提供技术支撑,助力阳光电源在GaN/SiC宽禁带器件应用领域的技术积累。