← 返回
4H-SiC MOSFET电子辐照耦合短路特性的研究
A Study on Short Circuit Characteristics of 4H-SiC MOSFET Coupled With Electron Irradiation
| 作者 | Yan Chen · Yun Bai · Antao Wang · Leshan Qiu · Jieqin Ding · Yidan Tang |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2024年12月 |
| 技术分类 | 功率器件技术 |
| 技术标签 | SiC器件 多物理场耦合 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 4H-碳化硅MOSFET 电子辐照 短路特性 少数载流子寿命 寄生BJT导通 |
语言:
中文摘要
本文研究了4H-碳化硅(SiC)MOSFET的电子辐照耦合短路(SC)特性。提出了电子辐照耦合的短路影响机制,并进一步研究了少数载流子寿命对辐照后器件短路特性的影响。采用2 MeV电子对4H-SiC MOSFET和4H-SiC晶圆进行辐照。分析了4H-SiC MOSFET静态参数的变化,并通过极限短路(LSC)测试方法研究了电子辐照耦合下4H-SiC MOSFET的短路特性。结果表明,辐照后,4H-SiC MOSFET的短路峰值电流增加了9.6%,临界短路失效时间(<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t}_{\text {crit}}$ </tex-math></inline-formula>)减少了10.85%,临界短路失效能量(<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}_{\text {crit}}$ </tex-math></inline-formula>)减少了5.29%。电子辐照后MOSFET的极限短路失效机制是寄生BJT导通。通过TCAD仿真和理论推导,证明了基极电流的增加是寄生BJT导通的主要原因,载流子寿命的降低会更早触发寄生BJT导通。电子辐照后少数载流子寿命可降低97%。通过TCAD仿真验证了电子辐照对短路特性的影响机制。总电离剂量效应会增加短路峰值电流,位移效应会显著降低少数载流子寿命,从而降低器件的短路能力。仿真结果与实验结果一致。
English Abstract
In this article, the electron irradiation coupling short circuit (SC) characteristics of 4H-silicon carbide (SiC) MOSFET are studied. The SC influence mechanism of electron irradiation coupling is proposed, and the influence of minority carrier lifetime on the SC characteristics of the device after irradiation is further studied. The 4H-SiC MOSFET and 4H-SiC wafer are irradiated by 2-MeV electrons. The changes in static parameters of 4H-SiC MOSFET are analyzed, and the SC characteristics of 4H-SiC MOSFET under electron irradiation coupling are studied by the limit SC (LSC) test method. The results show that after irradiation, the SC peak current of 4H-SiC MOSFET increases by 9.6%, the critical SC failure time ( t_ crit ) decreases by 10.85%, and the critical SC failure energy ( E_ crit ) decreases by 5.29%. MOSFET’s LSC failure mechanism after electron irradiation is parasitic BJT conduction. Through TCAD simulation and theoretical derivation, it is proved that the increase of the base current is the main cause of parasitic BJT conduction, and the decrease of carrier lifetime will trigger parasitic BJT conduction earlier. The minority carrier lifetime can be reduced by 97% after electron irradiation. The influence mechanism of electron irradiation on SC characteristics is verified by TCAD simulation. The total ion dose effect will increase the SC peak current, and the displacement effect will significantly reduce the minority carrier lifetime, thus reducing the SC capacity of the device. The simulation results are consistent with the experimental results.
S
SunView 深度解读
从阳光电源的业务视角来看,这项关于4H-SiC MOSFET电子辐照耦合短路特性的研究具有重要的工程应用价值。SiC MOSFET作为我司光伏逆变器和储能变流器的核心功率器件,其可靠性直接影响系统的安全运行和全生命周期成本。
该研究揭示了电子辐照对SiC器件短路承受能力的退化机制:辐照后器件短路峰值电流增加9.6%,但临界失效时间和能量分别下降10.85%和5.29%,这意味着器件的短路耐受窗口显著收窄。研究通过TCAD仿真证实,总离子剂量效应和位移效应共同作用,导致少子寿命下降97%,触发寄生BJT提前导通,这为我司优化器件选型和保护策略提供了理论依据。
对于阳光电源的实际应用场景,该研究具有三重价值:首先,在高海拔光伏电站和航天级应用中,宇宙射线辐照是不可忽视的环境因素,该研究为这些极端工况下的器件降额设计提供了量化参考;其次,研究揭示的短路失效机理可指导我司改进逆变器的短路保护算法,通过更精准的电流和时间阈值设定,在辐照环境下仍能保证系统安全;第三,少子寿命退化与器件动态特性的关联性分析,有助于我司开发针对性的在线健康监测技术。
技术挑战在于实验采用的2-MeV电子辐照条件与实际应用场景的辐照谱存在差异,需要进一步建立等效模型。建议我司与研究机构合作,开展基于实际运行环境的长期可靠性验证,并将辐照效应纳入器件HALT测试体系,为百万小时级可靠性目标提供更全面的保障。