← 返回
储能系统技术 储能系统 可靠性分析 ★ 4.0

基于RRAM的单器件实现向量乘法与多比特存储的超高面积效率方案

RRAM-Based Single Device for Vector Multiplication and Multibit Storage With Ultrahigh Area Efficiency

作者 Yang Shen · Zhoujie Pan · Mengge Jin · Jintian Gao · Yabin Sun · He Tian
期刊 IEEE Transactions on Electron Devices
出版日期 2024年12月
技术分类 储能系统技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★ 4.0 / 5.0
关键词 内存计算 阻变随机存储器 三维器件 向量乘法 存储密度
语言:

中文摘要

针对冯·诺依曼架构在速度与功耗方面的瓶颈,存内计算成为一种有前景的解决方案。该技术通常依赖由阻变存储器(RRAM)构成的存储单元阵列,利用其多阻态特性可提升数据存储密度。然而,RRAM普遍存在可靠性不足及长程循环特性难以优化的问题。本文提出一种新型三维RRAM器件,兼具2比特向量乘法与多比特存储功能。通过分析与SPICE仿真验证了其可行性,该器件无需写入验证过程,显著提升了面积效率、存储密度与运算速度。相较于传统用于向量乘法的CMOS电路,所需器件数量减少93.75%,为未来存内计算提供了新路径。

English Abstract

Considering that Von Neumann architecture has bottlenecks in both speed and power consumption, in-memory computation is a promising solution. The in-memory computation needs to be carried out in an array composed of storage units, which can be resistive random access memory (RRAM). When using RRAMs, the data storage density can be increased by taking advantage of their multiresistive state characteristics. However, the lack of reliability is a common problem of RRAM, and it is difficult to realize high long range cyclic characteristics purely from the principle. In this work, a new 3-D device based on RRAM is proposed, which is able to realize 2-bit vector multiplication and multibit storage. Analysis and SPICE simulation are conducted to validate the feasibility. The proposed device does not need to join the write-checking process and can greatly promote the improvement of area, storage density, and operation speed, providing a new route for the future in-memory computing. Compared to traditional CMOS circuits used for vector multiplication, our proposed device can achieve 93.75% reduction in terms of number of devices.
S

SunView 深度解读

该RRAM存内计算技术对阳光电源储能系统的智能控制器具有重要应用价值。PowerTitan等大型储能系统需处理海量电池管理数据和实时功率调度计算,传统架构存在功耗与响应速度瓶颈。该技术通过单器件实现向量乘法运算,器件数量减少93.75%,可直接应用于ST系列储能变流器的BMS芯片和iSolarCloud边缘计算节点,显著降低控制系统功耗并提升多电池簇并联时的实时SOC估算速度。其多比特高密度存储特性可优化构网型GFM控制算法的参数存储与快速调用,为分布式储能的毫秒级频率响应提供硬件加速方案,契合阳光电源智能化、高效化的技术路线。