← 返回
基于区域划分李雅普诺夫控制器的路面光伏系统快速最大功率点跟踪
Territory Division Lyapunov Controller for Fast Maximum Power Point Tracking of Pavement PV System
| 作者 | Mingxuan Mao · Diyu Gui · Tommy W. S. Chow |
| 期刊 | IEEE Transactions on Industrial Electronics |
| 出版日期 | 2024年7月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 MPPT |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 路面光伏阵列 最大功率点跟踪 区域划分Lyapunov控制器 跟踪精度 跟踪时间 |
语言:
中文摘要
路面光伏系统输出特性具有强随机性和快速变化性,给最大功率点的实时检测与快速跟踪带来挑战。本文提出一种基于区域划分李雅普诺夫控制器(TD-Lyapunov)的快速跟踪算法。该控制器通过李雅普诺夫函数保障系统稳定性,实现每个控制周期内快速收敛,并引入区域划分策略增强全局搜索能力。实验搭建了路面光伏阵列平台,与粒子群优化、樽海鞘群算法、灰狼优化及哈里斯鹰优化四种算法对比验证。结果表明,所提算法在多种车辆遮挡工况下均具有优异适应性,平均跟踪准确率达98.3%,较对比算法显著提升;平均跟踪时间仅为0.147秒,速度提高约七倍,且跟踪过程波动更小。
English Abstract
The stochastic fast-varying output characteristics of pavement photovoltaic (PV) system pose a great challenge for the real-time measurement and rapid tracking of the maximum power point (MPP). This article proposes a rapid algorithm for pavement PV arrays using territory division (TD) Lyapunov controller (TD-Lyapunov). The proposed Lyapunov controller is designed to maintain the important stability requirement which enables a fast convergence to the control equation at each duty cycle. A territory division strategy is designed in the Lyapunov controller to improve its global searching capability. Finally, an experimental platform for pavement PV arrays was built. The effectiveness and practicality of the proposed method are thoroughly tested and compared with four other algorithms, which include the particle swarm optimization (PSO) algorithm, salp swarm algorithm (SSA) algorithm, gray wolf optimization (GWO) algorithm and Harris hawk optimization algorithm. The experimental results demonstrate that the proposed algorithm can effectively adapt to a variety of vehicle shading conditions of the pavement PV arrays, and the average tracking accuracy reaches 98.3%, which is significantly higher than other comparative algorithms. In addition, the average tracking time of the proposed algorithm is only 0.147 s, which is seven times faster than the four compared algorithms. The tracking process also exhibits less fluctuation.
S
SunView 深度解读
该TD-Lyapunov快速MPPT算法对阳光电源SG系列光伏逆变器和ST储能系统具有重要应用价值。路面光伏场景的快速遮挡特性与分布式光伏、车棚光伏等动态遮挡工况高度相似,该算法0.147秒的跟踪速度较传统算法提升7倍,可显著改善SG逆变器在复杂遮挡下的MPPT性能。李雅普诺夫稳定性理论结合区域划分策略,为阳光电源现有扰动观察法和智能优化算法提供融合创新思路,可集成至iSolarCloud平台实现自适应算法切换。98.3%的跟踪准确率和低波动特性,能有效提升光储系统发电效率和电网友好性,特别适用于PowerTitan大型储能系统的快速功率响应场景。